International Technical Support Organization 6624-4348-00
Using and Administering AIX DCE 1.3

November 1994

International Technical Support Organization
Austin Center

International Technical Support Organization 6624-4348-00
Using and Administering AIX DCE 1.3

November 1994

—— Take Note!

Before using this information and the product it supports, be sure to read the general information under
“Special Notices” on page xiii.

First Edition (November 1994)

This edition applies to:

DCE Base Services for AIX 1.3, (5765-117)

DCE Security Server for AIX 1.3, (5765-118)

DCE Cell Directory Server for AIX 1.3, (5765-119)

DCE Enhanced Distributed File System for AIX 1.3, (5765-121)
DCE NFS to DFS Authenticating Gateway for AlIX 1.3, (5765-457)

for use with the AIX 3.2.5 Operating System.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications
are not stocked at the address given below.

An ITSO Technical Bulletin Evaluation Form for reader’'s feedback appears facing Chapter 1. If the form has been
removed, comments may be addressed to:

IBM Corporation, International Technical Support Organization
Dept. 948S Building 821 Internal Zip 2834

11400 Burnet Road

Austin, Texas 78758-3493

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

O Copyright International Business Machines Corporation 1994. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Abstract

This document describes the new features contained in the AIX Distributed
Computing Environment (DCE) Version 1.3 and the AIX Distributed File Server
(DFS) Version 1.3.

It provides useful instructions and tools for DCE administrators to configure cells
for different network topologies, manage a large number of users, perform daily
administration tasks, and reconfigure certain aspects of entire cells.

Planners, DCE administrators and system engineers will gain an idea of what
components must be used in certain business environments. Starting with a
discussion on business requirements, this document provides guidance on DCE
component layout in a cell for optimal performance and availability.

(292 pages)

[J Copyright IBM Corp. 1994 iii

iv Using and Administering DCE

Contents

Abstract L iii
Special Notices xiii
Preface XV
How This Document is Organized XV
Related Publications XVi
International Technical Support Organization Publications XVi
Acknowledgments XVii
Chapter 1. Introduction 1
1.1 Overview of Client/Server Technologies 2
1.1.1 Two-Tier Client/Server Model 4
1.1.2 Three-Tier Client/Server Model 4
1.2 Administration Issues in Client/Server Environment 5
1.2.1 What is Available for Management 7
1.3 Distributed Technology 10
1.3.1 DCE OVEerVieWw it 10
1.3.2 OSF DCE Architecture 11
1.3.3 OSF DCE Components and Services 12
1.3.4 NISINFS 23
1.3.5 IBM HACMP/6000 25
Chapter 2. Planning DCE Cells 27
2.1 General Considerations for DCE Cell Design 27
2.2 Technical Implications Imposed by the Core Components 29
2.2.1 Replication Capabilities oo 29
2.2.2 Server Selection Mechanismso 30
2.3 Sizing Guideline 31
2.3.1 Static Sizing 31
2.3.2 Dynamic Sizing 32
2.4 Planning the User Namespace 33
2.5 Planning the CDS Namespace 34
2.6 Conclusions and Planning Tips 35
2.6.1 One Cell or Multiple Cells? 35
2.6.2 Tips for Service Layout and Application Design 36
2.7 Planning Summary 40
Chapter 3. Implementing DCE Cells 43
3.1 Local (LAN-type) Cells 43
3.1.1 Scenario 1: All Servers on One Machine without Replicas 45
3.1.2 Scenario 2: Master Servers on One Machine and Replicas on
Another L 48
3.1.3 Scenario 3: Master Servers and Replicas on Different Machines . . . 54
3.2 LAN/WAN Cells 58
3.2.1 Scenario 4a: A Small Branch Connected via X.25 60
3.2.2 Scenario 4b: A Small Branch Connected via SLIP 68
3.2.3 Scenario 5a: A Large Branch Connected via X.25 71
3.2.4 Scenario 5b: A Large Branch Connected via SLIP 75
3.2.,5 Scenario 6: A Branch Connected with Two Links 81

[J Copyright IBM Corp. 1994 \'

Chapter 4. Administering DCE Cells 83

4.1 Configuring a Cell 84
4.1.1 Preparing for DCE Configuration 84
4.1.2 Installing the DCE Code 88
4.1.3 Configuring the Core Services 89
4.1.4 Configuring the DCE Clients 92
4.1.5 Starting and Stopping DCE 97
4.1.6 Replicating DCE Core Services 98

4.2 Configuring DFS 101
4.2.1 Configuring a DFS Server 101
4.2.2 Configuring a DFS Client 106
4.2.3 Replicating DFS Server 107
4.2.4 Defining Home Directories in DFS 115

4.3 Changing Cell Configurations 116
4.3.1 Splitting Cells 117
4.3.2 Joining Cells 119
4.3.3 Changing IP Addresses 119
4.3.4 Moving Services Within the Cell 129

4.4 Backup/Restore and Other Housekeeping Tasks 142
4.4.1 Backing Up DCE Core Services Related Information 143
4.4.2 Backing Up DFS Servers Related Information 148
4.4.3 Backing Up and Restoring DFS Data 152
4.4.4 Controlling Disk Space: System Created Files 152
4.45 Managing Caches on Client Machines 156

4.5 Administering Users and Groups 161
4.5.1 Adding Users 162
4.5.2 Modifying Users 167
45.3 Deleting or Moving Userso 171
454 Users Aliases 172
455 A Test with Adding 32,000 Users 174
4.5.6 Configuring Single Login/6000 180

4.6 Managing the cell_admin Account 194
4.6.1 Restoring the Password for the Cell Administrator 194
4.6.2 Cell Administrator Accidentally Removed 195
4.6.3 Adding a New Cell Administrator 200

4.7 Integrating an NFS/NIS Environment 202
4.7.1 Migrating from NIS Domains to DCE cells 203
4.7.2 Migrating Users from NISto DCE 205
4.7.3 Migrating NFS Files to DCE/DFS 208
4.7.4 Configuring DFS Access from NFS Clients 211

4.8 Configuring DCE on HACMP 215

Chapter 5. New Tools and Technologies 219

5.1 AIX DCE 1.3 Overview 219
5.1.1 Security Server Replication oo 220
5.1.2 Split Configuration 220
5.1.3 Local RPCs 221
5.1.4 Environment Variable RPC_UNSUPPORTED_NETIFS 222
5.1.5 Monitoring Function in IBM NetView for AIX 222
5.1.6 Exportable Data Encryption Facility CDMF 223
5.1.7 Stub Size Reductiono 223
5.1.8 Preferred File Server for DFS Clients 223

5.2 DFS Replication 224
5.2.1 Overview 224
5.2.2 Why Fileset Replication?, 224

Vi Using and Administering DCE

5.2.3 Which Files to Replicate? 225

5.2.4 How Does Replication Work? 225
5.3 NFS to DFS Authenticating Gateway 227
5.3.1 Introduction 227
5.3.2 Scope of Service 228
5.3.3 Concept 228
5.3.4 Administration Tasks for the System Administrator 230
5.3.5 Administration Tasks for the DFS User 232
5.3.6 Making DFS Access Available on the NFS Clients 234
5.4 Single Login/6000 235
5.4.1 Single Login/6000 Features Overview 236
5.4.2 Possible Enhancements for Single Login/6000 238
5.4.3 AIX and Single Login/6000 238
5.5 User (and ACL) Management 242
5.5.1 User ldentifications, Groups, and Access Rights 243
5.5.2 Management Tool Structure and Overview 244
5.5.3 Group Management 254
5.5.4 Adding Users: add_users 258
5.5.5 Enabling Users for DCE Login: rgy_enable_users 263
5.5.6 Enabling the Users Home Directory: dfs_enable_users 265
5.5.7 Enabling the ACLs in CDS and DFS: acl_enable_users 267
5.5.8 Suspending Users: SUSp_USErs 269
5.5.9 Deleting Users: del_users 269
5.5.10 Getting Information for Users from DCE: get_info_users 270
5.5.11 Getting Information for All Users from DCE: get_all_info 271
5.6 DCE on IBM AIX High Availability Cluster Multi-Processing/6000 272
5.6.1 HACMP/6000 Support for DCE 273
5.6.2 DCE Core Services on HACMP/6000 273
5.6.3 DCE Application Servers on HACMP/6000 274
Appendix A. Installing the Tools, 277
Appendix B. Description of the Systems in our Scenario 279
B.1 Our Test Network Environment, 279
B.2 Hardware Configurations, 279
List of Abbreviations 285
Index . . . 287

Contents Vii

Viii Using and Administering DCE

Figures

©CXNTRA~ONE

BE D WWWWWWWWWOWNRNNNRNNNNNNRERRRRPRRR PR
MNPOO®R®NOODURWONPOOONORWNEOO®ONDGRWOWDNDEO

[J Copyright IBM Corp. 1994

Options in a Distributed Environment 1
Client/Server Model 3
Example of C/S Application 3
Two-Tier Model 4
Three-Tier Model 5
Centralized Administration 6
Distributed Administration L L 7
DCE as Middleware 11
DCE Security Architecture 14
DCE Cell 20
DCE Multi Cell Environment 21
NIS and NFS, a Client/Server Environment 24
A Replicated NIS/NFS Environment 24
Security Breach in a NIS/NFS Environment 25
The HACMP/6000 Environment 25
Example of a Cell Namespace 34
Scenario 1: One Server Machine - No Replicas 45
Scenario 2: One Master Server - One Replica Server 48
Scenario 3: DCE Servers on Different Machines 54
Scenario 4a: A Small Branch Connected via 19,200bps X.25 60
Scenario 4b: A Small Branch Connected via 9600bps SLIP 68
Scenario 5a: A Large Branch Connected via X.25 71
Scenario 5b: A Large Branch Connected via SLIP 75
Scenario 6: A Branch Connected with Two Links 81
DFS Replication Fileset 108
Extract of a CDS Namespace, 121
Workflow Description of the cleanif Procedure 122
Generalized Workflow Description to Change an IP Address 125
Security Registry Files 177
How to Restore a Lost cell_admin Password 195
What to Do When cell_admin is Deleted? 196
Recreating the cell_admin Account 200
Scenario with Coexistence of NFS Clients and DCE/DFS 212
DCE on HACMP/6000 216
DFS Hierarchy File System 226
DFS/NFS Translator Architecture 228
User Management Workflow 245
The Central Repository 247
DCE User State Diagram 251
DCE Group State Diagram 255
The add_users Procedure 259
IP Network of our Test Environment 279

ix

X Using and Administering DCE

Tables

[J Copyright IBM Corp. 1994

2.
3.

Dependencies between the DCE Components

IBM DCE Products for Workstations

Functionality of the Different DCE Products

Xi

Xii Using and Administering DCE

Special Notices

This publication is intended to help customers, system engineers, and to a
certain extent marketing representatives understand and find solutions for
planning, configuration, and administration issues in a DCE environment. It is
mainly focused on AIX DCE Release 1.3, but also shows how OS/2 and DOS
Windows workstations are integrated. The information in this publication is not
intended as the specification of any programming interfaces that are provided by
AIX 3.2.5, OS/2, DOS Windows, DCE Threads for AlX, DCE Base Services for AlX,
DCE Security Server for AlX, DCE Cell Directory Server for AlX, DCE Enhanced
Distributed File System for AIX, DCE Global Directory Server for AlX, DCE Global
Directory Client for AIX, DCE Manager for AlX, or DCE NFS to DFS Authenticating
Gateway for AIX. See the PUBLICATIONS section of the IBM Programming
Announcement for AIX 3.2.5, OS/2, DOS Windows, DCE Threads for AlX, DCE
Base Services for AIX, DCE Security Server for AIX, DCE Cell Directory Server
for AIX, DCE Enhanced Distributed File System for AIX, DCE Global Directory
Server for AlIX, DCE Global Directory Client for AIX, DCE Manager for AlX, or
DCE NFS to DFS Authenticating Gateway for AIX for more information about what
publications are considered to be product documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not intended
to state or imply that only IBM's product, program, or service may be used. Any
functionally equivalent program that does not infringe any of IBM's intellectual
property rights may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment
specified, and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood, NY 10594 USA.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The information about non-IBM
(VENDOR) products in this manual has been supplied by the vendor and IBM
assumes no responsibility for its accuracy or completeness. The use of this
information or the implementation of any of these techniques is a customer
responsibility and depends on the customer's ability to evaluate and integrate
them into the customer's operational environment. While each item may have
been reviewed by IBM for accuracy in a specific situation, there is no guarantee
that the same or similar results will be obtained elsewhere. Customers
attempting to adapt these techniques to their own environments do so at their
own risk.

Reference to PTF numbers that have not been released through the normal
distribution process does not imply general availability. The purpose of
including these reference numbers is to alert IBM customers to specific
information relative to the implementation of the PTF when it becomes available
to each customer according to the normal IBM PTF distribution process.

[J Copyright IBM Corp. 1994 Xiii

The following terms, which are denoted by an asterisk (*) in this publication, are
trademarks of the International Business Machines Corporation in the United
States and/or other countries:

ADSTAR Advanced Function Presentation
AFP AIX

AIX/6000 CICS

HACMP/6000 IBM

InfoExplorer LoadLeveler

MQSeries NetView

0S/2 0S/400

Print Services Facility PS/2

PSF PSF/6000

RISC System/6000 RS/6000

Trouble Ticket

The following terms, which are denoted by a double asterisk (**) in this
publication, are trademarks of other companies:

AT&T AT&T (SM)

ATM Adobe Systems Incorporated

CA-Unicenter, Computer Associates Computer Associates International,
Incorporated

DG/UX Data General Corporation

DCE, Motif, Open Software Foundation, The Open Software Foundation

OSF/1, OSF

DEC, VMS, DIGITAL, POLYCENTER Digital Equipment Corporation

Episode, Encina, Transarc Transarc Corporation

HP, HP/UX Hewlett-Packard Company

IRIX Silicon Graphics, Inc.

Legato NetWorker Legato Systems, Inc.

Macintosh Apple Computer, Inc

NetWare, Novell Novell, Inc.

Network File System, NFS, NIS, ONC, Sun Microsystems, Inc.

Solaris, Sun, SunOS

Network License System, NetLS Apollo Computer, Inc., a subsidiary of
Hewlett-Packard Company

ORACLE Oracle Corporation

OEC Open Environment Corporation

POSIX Institute of Electrical and Electronic
Engineers

SCO The Santa Cruz Operation, Inc.

Siemens, Siemens-Nixdorf, Sinix Siemens Aktiengesellschaft

Tivoli, TME Tivoli Systems, Inc.

TPC-A Transaction Processing Performance
Council

UniTree OpenVision Technologies, Inc.

UNIX, X/Open X/Open Company Limited

Windows, Windows NT, Microsoft Windows Microsoft Corporation

Other trademarks are trademarks of their respective companies.

Xiv Using and Administering DCE

Preface

This document is intended to provide various levels of information on planning,
using, and administering a Distributed Computing Environment. It contains a
short introductory description of all DCE components and their administration
tools. This should enable the reader to understand the DCE cell layout planning
issues discussed thereafter. The chapters on planning and implementing DCE
cells include integration of OS/2 and DOS Windows workstations. However,
since their DCE release is not so advanced yet, we look more at their integration
into DCE when they are using the Sun Network File System (NFS). Furthermore,
we have documented our experiences in performing several configuration and
administration tasks. We have created some useful tools which will facilitate
administration and particularly large scale user management.

The first two chapters are intended for anyone who needs to understand the
basic DCE components and related planning issues. System administrators and
even people involved in the marketing of DCE will gain insight as to what
components must be used in certain business environments. The rest of the
document is mainly intended for DCE administrators. It will give them guidance
on how to lay out and implement the DCE components for different network
topologies and how to perform many important administration routines.

How This Document is Organized

The document is organized as follows:
Chapter 1, “Introduction”

This chapter describes distributed client/server environments in general. It
gives a short introduction on each DCE component, their administration
commands, packaging, and current charges.

Chapter 2, “Planning DCE Cells”

This chapter gives planners and administrators all the information they need
to lay out a cell with all its servers and clients based on customer and
business needs. It discusses technical feasibility and summarizes
performance and availability issues that affect the cell layout.

Chapter 3, “Implementing DCE Cells”

This chapter gives step-by-step configuration instructions for scenarios with
different network topologies. It discusses our experiences as well as
performance and availability issues for each scenario.

Chapter 4, “Administering DCE Cells”

This chapter is organized in a task-oriented format. It describes certain
administration routines step-by-step. The tasks range from configuring cells
and performing daily administration tasks to reconfiguring certain aspects of
entire cells. Some of these tasks are supported by tools that we have
developed during our project. This chapter is intended for system
administrators.

Chapter 5, “New Tools and Technologies”

This chapter describes the new features available with AIX DCE Version 1.3,
which corresponds to OSF DCE 1.0.3. It also introduces a set of shell scripts

[J Copyright IBM Corp. 1994 XV

and an integrated login package for AIX and DCE, which facilitate the entire
user management of a cell. The section which describes the highlights of
AIX DCE 1.3 might be of interest for every reader.

Related Publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this document.

Understanding DCE Concepts, GC09-1478

DCE V1.3 for AIX Release Notes, GC23-2434

DCE V1.3 for AIX User's Guide and Reference, SC23-2729

DCE V1.3 for AIX Administration Guide -- Core Services, SC23-2730
DCE V1.3 for AIX Administration Guide -- Extended Services, SC23-2731
DCE V1.3 for AIX Administration Reference, SC23-2732

DCE V1.3 for AIX Application Development Guide, SC23-2733

DCE V1.3 for AIX Application Development Reference, SC23-2734
DCE NFS to DFS Authenticating Gateway V1.3 for AlX, SC23-2735
NetView for DCE and Encina Manager Guide V1.3, SC23-2736

AIX HACMP for DCE and Encina Guide V1.3, SC23-2737

AIX DCE Getting Started V1.3, SC23-2477

AIX DCE and OS/2 DCE Message Reference, SC23-2583

OSF DCE Introduction to DCE (Prentice Hall), SR28-4991

OSF DCE User's Guide and Reference (Prentice Hall), SR28-4992
OSF DCE Administration Reference (Prentice Hall), SR28-4993
OSF DCE Application Development Reference (Prentice Hall), SR28-4995
Understanding DCE (O'Reilly & Associates), SR28-4855
HACMP/6000 Licensed Program Specification, GC23-2594
HACMP/6000 System Overview, SC23-2595

HACMP/6000 Planning and Installation Guide, SC23-2596
HACMP/6000 Application Programming Interface Guide, SC23-2597
HACMP/6000 Troubleshooting Guide, SC23-2598

HACMP/6000 Administration Guide, SC23-2599

International Technical Support Organization Publications
OSF DCE for AlX, OS/2 and DOS Windows Overview, GG24-4144
Developing DCE Applications for AIX, OS/2 and Windows, GG24-4090
The Distributed File System (DFS) for AIX/6000, GG24-4255

A complete list of International Technical Support Organization publications, with
a brief description of each, may be found in:

XVi Using and Administering DCE

International Technical Support Organization Bibliography of Redbooks,
GG24-3070.

To get listings of ITSO technical bulletins (redbooks) online, VNET users may
type:
TOOLS SENDTO WTSCPOK TOOLS REDBOOKS GET REDBOOKS CATALOG

—— How to Order ITSO Technical Bulletins (Redbooks)

IBM employees in the USA may order ITSO books and CD-ROMs using
PUBORDER. Customers in the USA may order by calling 1-800-879-2755 or by
faxing 1-800-284-4721. Visa and Master Cards are accepted. Outside the
USA, customers should contact their IBM branch office.

You may order individual books, CD-ROM collections, or customized sets,
called GBOFs, which relate to specific functions of interest to you.

Acknowledgments

The advisor for this project was:

Rolf Lendenmann
International Technical Support Organization, Austin Center

The authors of this document are:

Rolf Lendenmann
IBM Austin

Brice Muang-Khot
DCE Center of Competence, IBM France

Jacques Dubuquoy
International Education Center, La Hulpe, Belgium

Hanspeter Nagel
IBM Switzerland

Salvatore La Pietra
Security Center of Competence, IBM Germany

This publication is the result of a residency conducted at the International
Technical Support Organization, Austin Center.

We would like to offer our thanks to the IBM-Austin DCE Development team for
their invaluable advice and assistance in the reviewing of this document.

Preface XVili

XViii Using and Administering DCE

Chapter 1. Introduction

Distributed client/server (C/S) environments represent a new way to quickly and
transparently deliver information to users from various different sources and
locations. C/S technology can help companies reduce cost and time as well as
improve quality and customer satisfaction. However, this technology must be
well understood before being deployed and should be supported from company
management down to system administrators and users. The C/S distributed
environment sets new dimensions for its design, architecture and management.
Even company policies should adapt to meet the challenge of C/S distributed
environments. Benefits and new implications must be carefully studied when
you design and architect new applications based on C/S technology.

Network

. ONS(o:ckets

u 1 —
Encina ‘s - Communications

APPN 7 CICS/6000

Figure 1. Options in a Distributed Environment. There are so many options to build a
solution, the user has a hard time deciding what to choose.

When looking for right-sizing and re-engineering some of their existing
applications with distributed C/S technology, most customers have no idea how
much this transition phase will cost in terms of:

New hardware equipment
Software

Time

Resources

Skills

Administration

Security

and how much C/S technology will change the way companies do business.
In the last few years technologies have evolved faster than businesses. What
appeared innovative turned out to be a waste of capital investment. Nevertheless

most customers agreed a distributed C/S environment is a good choice, because
it will:

Leverage the mainframe investment

[J Copyright IBM Corp. 1994 1

Localize problems and solutions

Reduce software development cost

Reduce software/hardware maintenance cost

Better organize data and applications

Increase application portability

Increase scalability and migration

Improve system and network performance

Allow for a multi-vendor environment with a wider choice of platforms
Make users more autonomous by moving applications closer to them
Facilitate the use of standards and acceptance of open systems

In the following sections of this chapter we will present an overview of C/S
technologies and related administration issues. We will focus on the major
technologies available on the market namely Open Software Foundation**
Distributed Computing Environment (OSF** DCE**) and Sun** Network
Information System/Network File System** (NIS**/NFS**). We will also discuss
IBM* AIX* High Availability Cluster Multi-Processing/6000 (HACMP/6000%*).

The reader should be familiar with terms such as protocol and protocol suite,
synchronous and asynchronous protocol, TCP/IP, UDP, network interface,
connection-oriented and connection-less, Ethernet and Token-Ring, as well as
X.25, ISDN, SLIP, LAN, WAN. Terms such as distributed environment, distributed
C/S environment, distributed systems, and distributed C/S systems will be used
throughout this book without any distinction.

1.1 Overview of Client/Server Technologies

2

The phrase client/server was first adopted by Sybase in the late 1980s to market
their database technology. The C/S model implies cooperative and distributed
processing. C/S computing relies on a message-based communication between
a requester (or a client) that asks for a specific service and a responder (or a
server) that provides the information. The message exchange can be
synchronous or asynchronous. Examples of synchronous communications are
Remote Procedure Calls (RPCs) or System Network Architecture (SNA) LU 6.2
conversations. Asynchronous examples are the Encina** Recoverable Queueing
System (Encina RQS) or the Message Queueing Interface (MQI), which is part of
the IBM* Messaging and Queueing Series (MQSeries*) as defined in the IBM
Open Blueprint.

Using and Administering DCE

Service

Distributed
Client/Server

Environment

Service

Client Process Server Process

Figure 2. Client/Server Model. The simplest form of C/S computing has only two pieces:
a client process and a server process connected via a network.

The server process is the provider of services and the client is a consumer of
services. Clients usually manage the user-interface portion of the application,
while server programs generally receive requests from client programs and
execute the specified action and dispatch the response to clients. C/S
programming has become the most widely accepted paradigm to develop
distributed applications that inter-operate across a network.

Distributed C/S systems enable users to make better use of their computer
resources. They provide better control over the applications and help integrate
diverse sets of hardware and software. The flexibility introduced by distributed
C/S systems brings with it several questions, options, and approaches on how to
plan, configure and manage all the resources in such an environment.
Resources can be computers, devices, applications, users, groups and so on.

In a C/S distributed environment the distributed services can be replicated for
high availability, a server request can turn into a client request to another
server, multiple servers can run on the same system and so on.

Replicated
Security

File Service
Resource Manager
| T
wants to print fibo Printer

Figure 3. Example of C/S Application. A print request may turn into a client request to
the file server to provide a copy of the file to be printed.

Chapter 1. Introduction 3

Although the C/S model is the same, a small distinction should be made
between a two-tier model and a three-tier model.

1.1.1 Two-Tier Client/Server Model

The two-tier model, also called data-oriented model, shown in Figure 4 is the
classic C/S computing model where the client sends a request for data and the
server searches and sends the data back to the client. Remote Procedure Call
services based on DCE or Open Network Computing (ONC**) map to this model.

calls procedure M’- executes routine

suspended _—
resumes Send data
—
o
O Jewn Database

Figure 4. Two-Tier Model. A client machine accesses a server that holds data. The client
machine selects, examines and processes the data. The application is on the client.

The most popular representation of a two-tier model are Relational Database
Management Systems (RDBMSs). The entire application logic is on the client,
which prepares SQL data access commands and may receive a large amount of
data to process.

As of today RDBMSs are not really distributed. With trigger or snapshot
mechanisms tables can be replicated to other network nodes for load balancing,
but this actually only works well for read only (R/O) access. Basically there must
always be a master database on a powerful server machine. To offload all other
activities from the database machine the applications run on the client systems.
They contain all the data processing logic, for instance prepare SQL queries,
send them to the database, receive a large amount of data, and process them.
This model requires good network connections and powerful client machines.

1.1.2 Three-Tier Client/Server Model

4

For the three-tier model, also called application-oriented, shown in Figure 5 on
page 5 a monitor is included. The clients request application services from the
monitor and supply the required parameters. The monitor locates the desired
service, verifies the security credentials, and schedules the request for execution
by an application service.

Products such as Encina and CICS* or the Open Environment Corporation Toolkit
(OEC** Toolkit) working on top of DCE map to such a model.

Using and Administering DCE

F

R Application RDBMS

T Apphc ation [I’ Mainframe

E

N Application Queues

D

Monitor

Application Resource
Server(s Manager(s)

Figure 5. Three-Tier Model. Client requests are issued to a transaction monitor, which
schedules the requests for execution by an application server which in turn requests data
access from a data server.

Data access and processing is made on fast distributed and replicated servers
which are connected with powerful database machines over fast links. The
clients are only front ends which need not be too powerful and need not be
connected with fast links. So the three-tier model has several advantages over
the two tier model:

Better availability

Better scalability

Better load balancing

Lower costs for client machines and networks

More application and business process oriented
The elegance of any type of C/S model and its ability to mix and match
languages and HW/SW platforms is obvious. However, this flexibility makes

administration difficult in this environment. In the next chapter we will analyze
the system management aspects of C/S environments.

1.2 Administration Issues in Client/Server Environment

The theory and practice of centralized control evolved around a big mainframe
and has been driving company policies, user services, hardware configurations,
network management, and software development for decades.

Chapter 1. Introduction 5

6

Figure 6. Centralized Administration. Has been the only reliable solution in larger
environments for decades.

Usually the following rule is valid for C/S environments and centralized systems:
Larger means harder to manage, understand, modify, debug and fix. As
requirements of companies, departments, and even offices change, so does the
management of such environments. For example R&D departments are driven
by release schedules. They are very sensitive to timing and schedules. They
keep a very heterogeneous environment with a different set of hardware and
various versions of the same software on different platforms. The aspects of
security vary depending on the project and company policy. In contrast, the
Human Resource or Administration departments are a completely different
beast, and so are their system management structures. Computers are viewed
as black boxes. Needs for change and innovation are less than in an R&D
department. However, the security concerns are much higher.

Administration is a big issue and encompasses many different activities and
problem domains. More than in a centralized environment, system management
in a distributed environment needs to tie all components and aspects of a
distributed system together. This is not an easy task.

Using and Administering DCE

Figure 7. Distributed Administration. More than just printers and terminals are spread
over a network.

Some examples of the most common problems include:
System Management

Addresses operation of a single computer system such as administration of
users/groups, backups, file systems, and so on. In C/S environments this
needs to be done for multiple systems, possibly in different locations.

Network Management

Addresses services and devices necessary to connect and monitor multiple
computer systems. This includes bridges, routers, network interface and
Internet addresses.

Application Management

Manages the software that is used on a system or network. This includes
aspects of software installation, distribution, and configuration.

Many of these problems have been solved with different tools and applications.
New technologies are coming out to address certain management aspects, such
as job scheduling, tuning and performance monitoring, and error notification, but
most of the work still needs to be done.

1.2.1 What is Available for Management

When we start to count the number of packages available on the market that can
manage distributed environments, we find bits and pieces but not a unique
framework which integrates all the management functions. The holy grail for
quite some time was called OSF Distributed Management Environment (DME**).
About four years ago OSF announced DME at a member's meeting in Boston,
but soon after the announcement the project had its first problem. OSF then
released Distributed Services which includes:

License Management Service
Software Distribution Service
Event Service

Subsystem Management Service
Personal Computer Service

Chapter 1. Introduction 7

DCE technology meets the industry needs, but DME is not on the market. OSF is
facing a major reorganization, because former participants of OSF and Unix
International (Ul) will be brought together in a new organization, which will also
consider work done in the Common Open Software Environment (COSE).

Perhaps DME is not yet dead, but by the time DME is available and vendors start
to integrate it into their products other solutions may be available. So customers
are turning to proprietary software solutions from companies such as IBM, HP**,
SUN, DEC**, Computer Associates**, and Tivoli**, a company that has
established itself as a distributed system management solutions provider. After
their latest announcement of Tivoli Management Environment (TME**) they can
manage many PCs in mixed UNIX** and PC environments. TME includes
packages for software distribution, backup/restore, scheduling and workload
management, which work in a distributed environment. Very popular among
mainframe customers but less in the Open Systems arena is Computer
Associates** (CA). CA is providing CA-Unicenter** that gives a set of
management functions including user management, centralized backup, and
security verification. However, this package is still dependent on the central
system and not fully distributed.

IBM NetView* for AIX is one of the most popular network management solutions
from IBM. Lately it has been adopted by DIGITAL** for their POLYCENTER**
solution. IBM NetView for AIX simplifies network management in a multi-vendor
transmission control protocol/internet protocol (TCP/IP) network. It provides
monitoring and management of TCP/IP devices that include simple network
management protocol (SNMP) agents. IBM NetView for AIX provides several
application programming interfaces (APIs) to allow for integration of other
management tools. These applications can run on the IBM NetView for AIX
server and operate without SNMP, or they can extend the function of client
systems by providing SNMP subagents. With AIX DCE 1.3 it is possible to
monitor DCE services from IBM NetView for AIX in this way. Further examples of
applications that can run under IBM NetView for AIX are:

IBM Trouble Ticket* for AIX - for problem management

This allows you to easily manage problems from initial discovery to problem
closure. Diverse analysis tools and reports help circumvent problems before
they occur. It allows easy storage and retrieval of problem management
information, which can also be accessed from Microsoft Windows**, SunOS**,
and HP/UX** clients.

IBM Systems Monitor for AIX - for capacity management

This can be configured to warn the network operator that critical system
levels are being reached; action can then be taken before the system goes
down. There is even an analysis and automatic command execution function
that can be utilized to detect a danger level and execute a command to
correct a potential problem before it occurs. It is also available for NCR**
UNIX, Sun Solaris**, and HP/UX.

IBM NetView Hub Management Program for AIX - for network management

IHMP/6000 facilitates and expands the management of LANs with IBM 8260
Multiprotocol Intelligent Switching Hubs and IBM 8250 Multiprotocol
Intelligent Hubs. Graphics and forms provide maximum efficiency for the
everyday network control operations.

IBM NetView for AIX also supports the X/Open** management protocol (XMP)
APl to provide SNMP and common management interface protocol (CMIP) over

8 Using and Administering DCE

TCP/IP. For more information on IBM NetView for AIX please refer to IBM
announcement letters.

Other solutions for management of networked systems offered by IBM include
the following management packages:

IBM NetView Distribution Manager for AIX - for software distribution

NetView DM/6000, a follow-on product of SoftDist/6000, provides services for
software and data distribution and change control in a network of
workstations from a central RISC System/6000* machine acting as change
control server (CC server). Each client workstation in a TCP/IP network must
have installed a counterpart acting as change control client (CC client),
which can be AIX/6000*, OS/2*, HP/UX or Windows clients.

IBM Configuration Management Version Control - for change management

The IBM CMVC products provide application developers with configuration
management, change control, and versioning that is integrated with design
and defect tracking for heterogeneous environments. CMVC servers are
available for AIX, SunOS, Solaris, and HP/UX. These CMVC servers supports
six different CMVC clients on AIX/6000, OS/2, SunOS, Solaris, HP/UX and
DOS/Windows.

IBM Performance Toolbox (PTX) for AIX - for performance management

PTX consists of several performance programs packaged together. It
provides a toolbox framework for performance management in a network
environment. By gathering information from an SNMP network manager it
can provide a fine granularity real-time view into individual network nodes
and processes. The X- and Motif**-based applications provide real-time
color graphic performance monitors for local and remote systems,
performance analysis tools and performance tuning controls. PTX for AIX
also includes the PAIDE.

IBM Performance Aide (PAIDE) for AIX - for performance management

This is the client function for PTX. It acts as an SNMP subagent on all client
nodes, which can be AIX, SunOS, or HP/UX. It performs local data filtering
and alert processing.

ADSTAR* Data Storage Management (ADSM) - for data management

ADSM is a client/server storage management product that provides
administrator controlled, highly-automated, centrally scheduled,
network-based back-up and archive functions for workstations and LAN file
servers. It backs up data from clients running on OS/2, NetWare**, Windows,
DOS, Macintosh**, and UNIX platforms to a backup-server running on
AIX/6000, OS/2, VM or MVS.

UniTree** for AIX/6000 - for data management

This vendor product is a continuous, non-intrusive, multi-level, transparent
file and data storage management product. It migrates infrequently used
files from expensive disk storage to lower-cost storage while maintaining
frequently used files online and ready for use.

Legato NetWorker** for RISC System/6000 - for data management

This vendor product, is a powerful, easy-to-use product designed to backup
data across an entire network of computer systems. It also automates and
simplifies file recovery, so users never waste time recreating valuable work.

Chapter 1. Introduction 9

LoadLeveler* for AIX - for workload management

It provides a facility for building, submitting, and processing jobs quickly and
efficiently in a dynamic environment. LoadLeveler can manage serial batch,
parallel batch, and interactive sessions seamlessly across all participating
nodes. It is also available for HP/UX, SunOS, Solaris, and IRIX**,

Network License System** (NetLS**) - for resource management

NetLS is an enabling software package architected specifically for computing
environments and allows users to dynamically allocate software resources
over a network. It offers benefits to both software developers, by ensuring
their software products are used under properly licensed conditions, and to
software users, by ensuring they get maximum utilization of their software
assets.

IBM Distributed SMIT for AIX (DSMIT) - for configuration management

Provides the functionality of the standard AIX System Management Interface
Tool (SMIT) in a homogeneous or heterogeneous distributed systems
environment. DSMIT allows flexibility in managing clusters of resources,
performing most tasks concurrently or sequentially. It is also available for
SunOS and HP/UX.

IBM Print Services Facility* for AIX (PSF/6000*) - for print management

PSF* delivers IBM Advanced Function Presentation* (AFP*) capabilities to the
RISC System/6000 platform. It provides printing solutions for stand-alone
environments, local area network (LAN) environments, distributed print
environments (via TCP/IP) and Network File System (NFS) protocols. It also
provides printer sharing between LAN systems and host systems.

Some of these solutions are distributed, some are not. You can refer to product
related documentation to read more about a specific product.

1.3 Distributed Technology

In the following sections we will describe the technologies which are the subject
of our administration experience, namely:

Open Software Foundation Distributed Computing Environment (OSF DCE)
Sun Network Information System/Network File System (NIS/NFS)
IBM High Availability Cluster Multi Processing/6000 (HACMP/6000)

1.3.1 DCE Overview

DCE is establishing a de-facto standard in the client/server arena with thousands
of site installations and hundreds already in production. DCE is supported or at
least announced on major IBM operating systems or platforms such as AlIX*,
0S/2, MVS, VM and OS/400*. It is also available on major competitor platforms
such as Microsoft Windows, DEC** VMS**, Siemens-Nixdorf** BS/2000, HP
MPE/ix, and on all the UNIX flavors including: AIX, OSF/1**, Solaris, HP/UX,
DG/UX**, Sinix**, SCO**. All this has evolved in less than two years from the
first release of OSF DCE 1.0. Not even Sun NIS/NFS can claim such broad
support in such a short time. After the announcement of the merge between
UNIX International and OSF members, it has become clear that DCE is going to
be adopted in the NIS/NFS community, too. In this documentation we want to
help SEs, customers, and marketing representatives to:

Plan for DCE

10 Using and Administering DCE

Understand what costs are involved for a particular DCE configuration

Understand what configuration can map best the customer’'s business
environment

Recognize the most common administration tasks in a DCE environment

Understand what to do when migrating from NIS to DCE or from an
environment of networked systems to DCE

Optimize performance and availability of your DCE environment

We will try to answer all these questions, and give a good and fair DCE
perspective.

1.3.2 OSF DCE Architecture

OSF DCE is a complete architecture that takes full advantage of the client/server
paradigm. It offers a set of services and APIs, that can be used to build
distributed applications and a set of management tools to manage the
distributed environment. It can inter-operate with other environments.

Distributed Client/Server Applications
r EXTENDED SERVICES _|
M Global M
I Distributed File Service Directory I
. Service—GDS .
D D
CCRE SERVICES
D D
L Security]| Time Service Directory Service || Mgmt CL
Services Services
E E
W Remote Procedure Call w
A A
R DCE Threads(in AIX Thread—Safe Library — libc_r) R
E E
i_ | Transport Services and Network | JI
| DCEhost: A 052 VM MVS 05/400 Windows OSF/1 HPUX NT |

Figure 8. DCE as Middleware. The operating system is completely hidden by a set of
core and extended services offered by DCE.

If we consider DCE as Middleware (as most of the Network Operating Systems
such as Novell** NetWare), the operating system is hidden to a certain extent by
a set of core and extended services offered by DCE. The users will see only the
distributed client/server application. It will be completely transparent to them
whether the application is local or distributed and what operating system is
underneath a distributed service. So the architecture viewing DCE as middleware
is explained in the following sections.

Chapter 1. Introduction 11

1.3.3 OSF DCE Components and Services

12

The following sections provide a short description of the DCE components and
technology. At the end of each section you will be referred to other
documentation that contains a full description. In 1.3.3.12, “DCE Packaging and
Cost” on page 21 you will find product names and numbers in AlX, OS/2 and
DOS/Windows that contain the respective component.

1.3.3.1 DCE Threads

Threads support the creation, management, and synchronization of multiple
concurrent execution paths within a single process. The threads API is based on
POSIX** 1003.4 Draft 4. This component can map its calls directly to operating
system threads, if available. AIX Version 3 does not support threads in its
kernel. AlIX Version 4.1 has kernel threads, which will be used by DCE, once DCE
is available on AIX 4.1.

The DCE core services and all depending applications use threads. This all
happens under the covers. Customer applications may or may not use threads
for their own purpose. However, application developers must know they are
using threads anyway through the DCE RPC runtime services.

Since the present threads implementation is running in user mode rather than in
kernel mode and the kernel does not know threads, one thread could put the
entire process into a wait state thereby making all other threads also wait.
Programmers have to be aware of this situation, if they use threads. To avoid
blocking the process with a thread, they should either use only calls of thread
safe libraries, use asynchronous 1/O calls, or write their applications in a way
that one server is only talking to one client at a time and vice versa.

For a complete overview on the threads facility refer to Chapter 3 in the ITSO
Austin publication OSF DCE for AlIX, OS/2 and DOS Windows Overview and DCE
related documentation listed in “Related Publications” on page xvi.

1.3.3.2 DCE Remote Procedure Call

The DCE Remote Procedure Call (RPC) facility allows individual procedures in an
application to run on a computer somewhere else in the network. DCE RPC
extends the typical procedure call model by supporting direct calls to procedures
on remote systems. RPC presentation services mask the differences between
data representations on different machines and networking details to allow
programs to work across heterogeneous systems.

DCE RPC provides programmers with several powerful tools necessary to build
client/server applications. Development tools consist of:

Interface Definition Language (IDL) and related compiler idl

uuidgen generates UUIDs (a 32-digit number) to uniquely identify resources,
services, and users in DCE independently from time and space

Runtime service implements the network protocol and communication
between the client and server applications

Using threads allows a client application to call several servers at once for
instance for parallel calculation processes. For a complete overview on the RPC
facility refer to Chapter 4 in the ITSO Austin publication OSF DCE for AlX, OS/2
and DOS Windows Overview and DCE related documentation listed in “Related
Publications” on page xvi.

Using and Administering DCE

1.3.3.3 DCE Security Service
Distributed computing encourages a free flow of data between nodes, expanding
the capabilities of interconnectivity and interoperability. Security breaches might
come from any component of the distributed system. Security is one reason why
customers are interested in DCE.

Security threats can be:
Eavesdropping: data can be read as it flows over the network

Masquerading: a system can pretend to be another system and thus gain
unauthorized access to resources

Modification: data can be modified as it flows over the network

Denial of service: service can be denied from an unauthorized source
These are just a few of the problems that can affect requirements such as:

Confidentiality: Protection against unauthorized access to information

Integrity: Protection against unauthorized modification of information

Availability: Protection against unauthorized impairment of functionalities

For such reasons security is a critical component in a distributed computing
environment. A big concern is authentication of clients and servers. DCE solves
this using Kerberos. Some customers ask why they should pay thousands of
dollars for DCE when they can get Kerberos free from MIT. Not only is DCE an
authentication framework like Kerberos but also a complete security framework,
with an architecture that enforces a discretionary security policy through the use
of Access Control Lists (ACLS).

Introducing Kerberos in your organization and creating Kerberos protected
programs such as file transfer (ftp) or remote virtual terminal access (telnet) will
not secure the company’s information assets. To protect company’'s information
assets a company must have a security policy in place, a security architecture
that enforces the company's security policy and finally a technology that
implements such an architecture through the use of different security services
and mechanisms. Where technology cannot implement such mechanisms, a set
of rules and procedures must be in place to specify what needs to be done.

DCE embeds authentication and privacy into the RPC communication facility
providing a powerful security framework to developers of DCE applications.

If you were using only Kerberos without DCE, you would have to take care of the
transport layer yourself, using sockets, streams or whatever, and decide, if you
want authentication to happen just once, or for each message. Also you would
have to decide, whether you need privacy for your data, and if so use the
session key to encrypt data. You would accomplish this using data encryption
standard (DES) and would have to deal with all the related export licence issues
outside the US.

In DCE your application needs one call on the server side and one call on the
client side to establish the level of authentication and privacy your application
needs. For data encryption you can either use DES or the new Common Data
Masking Facility (CDMF) which uses a 40-bit encryption key in contrast to the full
52-bit DES key. CDMF is allowed for export and still provides strong
confidentiality.

Chapter 1. Introduction 13

. . DCE-Trusted Computing Base

Principals, Groups and

Authenticated RPC
with client’s PAC
|

SLAVE Security Daemon
READ ONLY

Authentication

MASTER Security Daemon

READ AND WRITE (1) Issue PAC

(2) Issues Tickets and Session Keys

Figure 9. DCE Security Architecture

DCE Security Service consists of:

DCE Authentication Service: also called Key Distribution Center or Ticket
Granting Server provides clients with tickets and session keys

Privilege Service: provides Privilege Attribute Certificates (PACs) used by
ACL Managers to determine the access permissions to services and/or data

DCE User Registry: manages accounts, principals, groups, organizations,
aliases, services, policies and properties with the help of the rgy edit
administrative command

DCE Login Facility: initial authentication is accomplished with the dce_Togin
command

Access Control List (ACL): goes with each object and protects it by listing
authorized principals and groups together with their access rights; ACLs are
set using acl_edit and checked by service ACL managers on access
requests of clients

Privilege Attribute Certificates (PACSs): certifies which groups a principal is a
member of, so that ACL Managers can check the permissions principals
might get from group entries in ACLs

Authenticated RPC: provides different levels of authentication for API calls,
which range from none to a level where for each message exchange
between client and server an authentication is required

Secure RPC: provides different levels of integrity and privacy for API calls,
which range from none to a level where each message between client and
server is encrypted using the session key and DES or CDMF

Security Replication: for high availability the security master copy is
replicated and propagated to the security slave copy; the replicated security
slave server can accomplish read-only operations, such as issuing tickets,
but all the write-access operations will hang

14 Using and Administering DCE

— Note

Each replicated security server requires a separate license of the
program.

A complete set of DCE Security APIs is offered to write trusted distributed
applications. For a complete overview on DCE Security refer to Chapter 5 in the
ITSO Austin publication OSF DCE for AlIX, OS/2 and DOS Windows Overview and
DCE related documentation listed in “Related Publications” on page xvi.

1.3.3.4 DCE Directory Service

DCE Naming Service provides a naming model throughout the distributed
environment. This model allows users to identify by name resources such as
servers, files, disks, or print queues, and gain access to them without needing to
know where they are located in a network. Further, users can continue referring
to a resource by the same name even when a characteristic of the resource
changes, such as its network address.

The global distributed computing environment is composed of administratively
independent cells. The name space is hierarchically organized and forms a tree,
with containers (directories) and leaf objects. The root directory /... is global and
contains all cell names, which build the root directories for each cell. The
subtrees underneath each /.../<cellname> directory are under the management
domain of their respective cell. Users within a cell can use the short form /.: to
address their local root directory. CDS then replaces the name /.: with the
appropriate global name /.../<cellname>. The leaf objects can be any resource
as mentioned above. The main purpose however, is to store and retrieve
binding information for DCE RPC servers, which can be used by DCE clients to
find and bind to a server.

The naming system consists of the following components:

Cell Directory Service (CDS)

Global Directory Service (GDS) X.500 (separate product)
Global Directory Agent (GDA)

Application Programming Interface

The local naming system is provided by the CDS which can be distributed and

replicated. It is integrated with a global naming system X.500 or DNS (Domain
Name System) via a Global Directory Agent. Communication between cells is

done via the Global Directory Agent (GDA) where the global name space is the
naming bridge. The global name space here can be X.500 or DNS.

Objects from the global name space are available from within a cell via the
Global Directory Agent (GDA) function which translates CDS internal protocol to
OSI| DAP (Directory Access) protocol. The GDA supports worldwide DCE access
via DNS, the TCP/IP Domain Name Service, or CCITT X.500, which is provided by
GDS.

The GDA is the CDS gateway to GDS. Both CDS and GDS offer X/Open Directory
Service (XDS) API as their programming interface. For a complete overview on
the CDS facility refer to Chapter 6 in the ITSO Austin publication OSF DCE for
AlIX, OS/2 and DOS Windows Overview and DCE related documentation listed in
“Related Publications” on page xuvi.

Chapter 1. Introduction 15

16

1.3.3.5 DCE Distributed Time Service

DTS provides precise, fault-tolerant clock synchronization on the computers
participating in a Distributed Computing Environment both over LANs and WANSs.
The synchronized clocks enable DCE applications to determine event
sequencing, duration and scheduling. The core services, especially the ticket
granting service, heavily rely on synchronized clocks. Note that installing DTS is
not a requirement, the clocks could be synchronized by other time services.
However, the use of DTS is highly recommended, because it uses security
service and adjusts time smoothly rather than correcting system clocks all at
once or even backwards. The DTS clerks obtain time information from at least
three DTS servers in a LAN and adjust their time. If they do not receive the
required number of time values in their LAN, they contact global DTS servers.

DTS is based on Coordinated Universal Time (CUT or UTC), an international time
standard. Different types of time servers provide for different transmission
delays between LANs and WANs which would influence correct time calculation:

Local DTS Servers: maintain synchronization within a LAN and synchronize
their own clocks using the responses of all other DTS servers in the LAN. If
they do not get at least responses from two other DTS servers in their own

LAN, they have to contact global DTS servers.

Global DTS Servers: Usually at least one per LAN. They advertise
themselves into the CDS so they can be contacted by other DTS servers or
even clerks, if these do not have the required number of DTS servers in their
own LAN. To adjust their own clocks they act like local DTS servers. If they
get their time from an external time provider, they do not adjust their clock
with values obtained from other DTS servers.

Courier DTS Servers: Usually one per LAN. Any local or global DTS server
can have a courier role. What is special about this role is, they must contact
one global DTS server, even if they get enough time values from DTS
servers in their own LAN. By doing so they maintain synchronization
between multiple LANSs.

A complete set of DCE DTS API is offered as well as a Time Provider Interface
(TPI) which allows a time provider process to pass its UTC time values to a DTS
server. Many standards bodies disseminate UTC by radio, telephone, and
satellite. TPI also permits other distributed time services such as the Network
Time Protocol (NTP) to work with DCE.

Replication of DTS servers does not require additional licenses, because DTS is
included in the DCE base product. For a complete overview on the DTS facility
refer to Chapter 7 in the ITSO Austin publication OSF DCE for AlX, OS/2 and DOS
Windows Overview and DCE related documentation listed in “Related
Publications” on page xvi.

1.3.3.6 Distributed File System

DCE DFS is a distributed file system which allows users to share files stored in a
network of computers as easily as files stored on a local machine/workstation.
The DCE Distributed File System uses the client/server model common to other
distributed file systems. The file system gives users a uniform name space, file
location transparency, and high availability. Reliability is enhanced with a
log-based physical file system which allows quick recovery after server failures.
Files and directories can be replicated to multiple machines to provide reliable
file access and availability. Security is provided by a secure RPC service and

Using and Administering DCE

Access Control Lists, which conform to POSIX 1003.6. DFS implements a
superset of that POSIX ACL Draft.

As shown in Figure 8 on page 11 DFS is an Extended Service and is built on the
DCE core services: Security, CDS and DTS. When accessing remote data, DFS
uses DCE Remote Procedure Calls (RPCs) to communicate between participating
systems, exchanging authorization requests, access requests, file and directory
data, and synchronization information. It uses the DCE Naming Services to
resolve global names and the DCE Security Service to authenticate users and
services. It depends on the DCE Time Service to keep the clocks in
synchronization.

The DCE LFS is a log-based file system that is integrated into the kernel. Also it
is based on aggregates which are equivalent to standard UNIX disk partitions or
AlX logical volumes. Aggregates are logically composed of multiple filesets,
which are mountable subtrees. Filesets share the disk blocks within an
aggregate. Filesets can be administered and referenced individually. Quotas can
be set on a per fileset basis. Filesets are the units that provide support for
administrative functions needed in a distributed environment such as replication,
cloning, reconfiguration (move filesets for load balancing), and backup. The
cloning function provides copy-on-write semantics so that double disk space is
not needed when a fileset is cloned. Cloning also allows the above mentioned
functions to be performed while the filesets are online with minimal down time
for users of the filesets.

Directories and files can be accessed from users anywhere on the network,
using the same name since all DCE resources are part of a global namespace.
High performance is achieved through caching on the client side to reduce
access time and network traffic.

DFS has many advantages over NFS:

Stateful implementation allows for caching on client side
Provides single site read/write semantics

Fileset replication

Security (Authentication and ACLS)

Cloning

Backup Servers

DFS files can be exported to NFS so that NFS clients can access them as
unauthenticated users. The new NFS/DFS Authenticating Gateway product
provides a mapping of NFS users into authenticated DFS users. To achieve this,
NFS users use the dfsiauth command to perform a DCE login to set up
credentials for a certain combination of userID/nodelD, which will be revoked
when the ticket expires.

For a general overview on DFS facility refer to Chapter 8 in the ITSO Austin

publication The Distributed File System (DFS) for AIX/6000 and DCE related
documentation listed in “Related Publications” on page xvi.

Chapter 1. Introduction 17

18

1.3.3.7 Diskless Workstation Support

A diskless system has no local disk or any other storage media. It is connected
to other machines through local area network (LAN) connection. It is not very
different from any other DCE client machine except for the following
requirements imposed by the absence of a disk:

The boot image is stored on a server and is obtained when the power is
turned on.

The root file system is stored on a server and is accessed remotely through
the distributed file system.

The distributed file system uses a memory-resident cache instead of a
disk-resident cache.

The virtual memory manager (VMM) pages to a virtual disk, which is mapped
to a file or a device on a server.

IBM has not shipped the OSF DCE Diskless technology, and OSF has now
dropped diskless support, too. So, the /local file systems of the diskless client
have to be accessed in the traditional way, via NFS. Paging can occur to a local
disk (dataless client) or via NFS to a server. Once this client has booted
properly it can run as a normal DCE and DFS client.

1.3.3.8 PC Integration

IBM offers PC integration into DCE for OS/2 and for Windows. On OS/2 a client
package and a server package are available, on Windows only a client package
is available. OS/2 will add a DFS client sometime in the future and Gradient will
do the same for the Windows part. For a complete overview on PC-Integration
refer to the ITSO Austin publication OSF DCE for AlX, OS/2 and DOS Windows
Overview and DCE related documentation listed in “Related Publications” on
page Xxvi.

1.3.3.9 Mutual Dependencies between DCE Components

Core services in DCE such as Cell Directory Service and Distributed Time
Service use the security service. Security service in turn uses CDS and RPC and
so on. The following table shows what depends on what.

Table 1. Dependencies between the DCE Components

Is using -> DFS GDS CDS DTS RPC Sec Thr
DFS * v v v v v

GDS * v

CcDS) * v Vv v v

DTS * v v v

RPC v * v v
Security v v v * v
Threads *

CDS is not depending on GDS, but it can use it via the Global Directory Agent
(GDA) component of CDS.

Because of these interdependencies, the services must be started up in a certain
sequence and there are auxiliary files to bypass yet missing components.

Using and Administering DCE

1.3.3.10 DCE Management Services
Several administration tools are provided to manage DCE. The following are
provided by OSF and therefore available on all DCE implementations:

Security Service

rgy _edit Security registry management (principals, accounts)
acl_edit Consistent interface to different ACL managers
sec_admin Controls operation of the security servers

rmxcred Purges expired tickets from the credentials directory

passwd_import Creates registry entries from /etc/passwd files
passwd_export Creates /etc/passwd type file out of registry entries

Directory Service

cdscp General CDS client and server management interface

cdsli Listing of all CDS namespace entries

cdsbrowser Query tool for CDS objects

cdsdel Can recursively delete entire directory subtrees in the CDS
namespace

Remote Procedure Call

rpccp Management of RPC daemon and RPC CDS entries
Time Service

dtscp Management of time servers

Distributed File System

fts Command suite for file server management

bos Command suite management for general DFS management
bak Command suite for data backup management

cm Command suite for DFS client cache management

IBM improved the DCE management aspects by creating new high level
configuration commands and integrating all procedures into SMIT, thus hiding
some of the complexity of the OSF commands. Examples of new high level
commands are:

mkdce Defines a machine with all its roles into a cell

rmdce Deletes a machine from a cell

mkdfs Defines DFS services on a machine

rmdfs Deletes DFS services from a machine

mkdfs1fs Creates an LFS fileset on a DFS server machine, exports and
mounts it

rmdfs1fs Removes an LFS fileset from a DFS server machine

mkdfsjfs Exports a JFS file system from a DFS server machine and
mounts it

rmdfsjlfs Removes a JFS file system from the DFS file space

rc.dce, rc.dfs Start up script for selected or all DCE (DFS) services

dce.clean Stop script for selected or all DCE (DFS) services

dfs.clean Stop script for selected or all DFS services only

The SMIT menus can easily administer single entities (users, groups, accounts,
ACLSs), but there is no convenient way to administer multiple users. There is also
a lot to do in the area of reconfiguring parts of the cell. It is the objective of this
publication, to provide a set of tools and tips to improve the administration of
DCE.

Chapter 1. Introduction 19

20

1.3.3.11 Organization of a Distributed Computing Environment
In DCE a cell represents the smallest unit of resource such as systems, users,
services and nodes that work together and are administered together.

A minimal cell must include threads, the RPC communication layer and at least
one instance of all the core services:

Cell Directory Server

Security Server

At least three Distributed Time Servers (optional, but recommended)

Figure 10. DCE Cell

Cells can be defined and configured in different ways, depending on the user,
administration and/or company requirements. For example a small company
that offers only one kind of service can be set up as a single cell as is shown in
Figure 10.

Another example might be the faculty departments at the University of Texas.
They can have their own manageable cells and use inter-cell communication for
common services or data.

Using and Administering DCE

e e,
e e
e L

Intercell Communication

Figure 11. DCE Multi Cell Environment

Inter-cell communication is provided through GDA. The DCE architecture
supports different types of network protocol families. The current OSF DCE
reference implementation runs over the Internet Protocol (IP) family, using either
UDP (User Datagram Protocol) or TCP (Transport Communication Protocol) as
transport layers. The AIX DCE Version 1.3 introduces a fast local transport family,
the local UNIX sockets, for cases where clients and servers are on the same
machine.

The home cell for a principal shows the cell where the information about the
principal is stored. More generally speaking, a cell represents the collection of
resources that use a common naming and security policy.

1.3.3.12 DCE Packaging and Cost
The following two tables give an overview on order numbers, current prices and
functionality of the different products available for AIX, OS/2 and DOS Windows.

Table 2 (Page 1 of 2). IBM DCE Products for Workstations

Product Description Price
Number (%)

AIX

5765-232 DCE Threads for AIX 1.3 (1) 99
5765-117 DCE Base Services for AIX 1.3 (DCE only) 295
5765-117 DCE Base Services for AIX 1.3 (DCE & Encina) 395
5765-117 DCE Base Services for AIX 1.3 (Encina only) 150
5765-118 DCE Security Server for AIX 1.3 (2) >2,300
5765-119 DCE Cell Directory Server for AIX 1.3 (3) >2,300
5765-121 DCE Enhanced Distributed File System for AIX 1.3 (4) >2,900
5765-120 DCE Global Directory Server for AIX 1.3 (5) >2,000
5765-259 DCE Global Directory Client for AIX 1.3 195
5765-456 DCE Manager for AIX 1.3 3000
5765-457 DCE NFS to DFS Authenticating Gateway for AIX 1.3 (6) >1,700

Chapter 1. Introduction 21

Table 2 (Page 2 of 2). IBM DCE Products for Workstations

Product Description Price

Number (%)
0S/2

5696-692 IBM DCE Client for 0OS/2 65

5696-657 IBM DCE for SDK 0S/2 and Windows 1,095
DOS/WINDOWS

5696-690 IBM DCE Client for Windows 65

(1) The Threads package is included in DCE Base for AIX. This separate
offering enables the usage of threads with AIX 3.2.5 in environments
without DCE.

(2) The indicated price is valid for processor group D5. The full list of prices
for the security server is $2,300 (D5), $3,050 (E5), $5,750 (F5), $8,625 (Gb),
and $2,670 (P5).

(3) The indicated price is valid for processor group D5. The full list of prices
for CDS is $2,300 (D5), $3,050 (E5), $5,750 (F5), $8,625 (G5), and $2,670 (P5).

(4) The indicated price is valid for processor group D5. The full list of prices
for DFS is $2,900 (D5), $3,900 (E5), $5,700 (F5), $8,550 (G5), and $2,625 (P5).

(5) The indicated price is valid for processor group D5. The full list of prices
for the GDS server is $2,000 (D5), $3,050 (E5), $5,750 (F5), $8,625 (G5), and
$2,670 (P5).

(6) The indicated price is valid for processor group D5. The full list of prices

for the NFS to DFS gateway is $1,700 (D5), $1,950(E5), $3,650 (F5), $5,475
(G5), and $1,710 (P5).

The DCE implementations for OS/2 and DOS/Windows are based on OSF DCE
1.0.1. They operate on Windows 3.1 and 0OS/2 2.1.

Table 3 (Page 1 of 2). Functionality of the Different DCE Products
0S/2 &
AIX DCE 1.3 .
Windows
G G O W
T S D D S i
h e S S 2 n
DCE Package -> r B c c E . . S .
a u D S C D C C
e D
a S r S F e | K | |
d e i S r i (1) i i
t v e e e
s
y e n n n
r t t t
Threads v v v v
RPC v v v
Security Client v v v
Security Master v v
Security Replication v
CDS Client v v v v

22 Using and Administering DCE

1.3.4 NIS/NFS

Table 3 (Page 2 of 2). Functionality of the Different DCE Products
0S/2 &
AIX DCE 1.3 .
Windows
G G (0] w
T S D D S i
h e S S 2 n
DCE Package -> r B c c E . . S .
a u D S C D C C
e D
a s r S F e | K | |
d e i S r i (1) i i
t \Y e e e
s
y e n n n
r t t t
CDS Server v
CDS Replication v
DTS Client v v v v
DTS Server v v
DFS Client v
DFS Server (JFS) v
DFS Server (LFS) v
DES (US Only) v v
CDMF (exportable)
X.500 Access v
X.500 Directory v
OSF DCE Level 1.0.3 1.0.1

(1) The Software Development Kit includes five licenses each of the OS/2 and
the DOS Windows DCE clients.

Sun Network Information System / Network File System (NIS/NFS) was released
in 1985 by Sun Microsystems. NFS was a more successful product than the
equivalent Remote File System (RFS) implemented by AT&T** in the same
period. Sun published the specifications and made them publicly available. NFS
is the most popular solution for sharing file systems since it is available on
almost any operating system. Sun Remote Procedure Calls (Sun RPCs) are
used to build NFS. RPC is built on top of the External Data Representation (XDR)
protocol, which standardizes the various data types used in remote
communications. UDP/IP is the transport protocol used in NFS. NFS daemons
provide services such as mount and control of remote file systems.

Chapter 1. Introduction 23

Client Process Server Process

Client Request
Clonteng v
RPC/XDR © o €| RPC/XDR

Server Reply

NIS Client NIS Server

Figure 12. NIS and NFS, a Client/Server Environment

Network Information System (NIS) is also a Sun RPC-based application. This
service retrieves information about users, passwords and host names from the
NIS database, so called NIS maps. The master NIS database and related
daemons can be replicated on other slave servers for high availability.

NIS Master Server

NIS Slave Server
—
NIS DB Transfer

NIS DB Transfer

NIS Slave Server

NIS/NFS Request
NIS/NFS Request
Client g\
Client Client
ent

Figure 13. A Replicated NIS/NFS Environment

Although NFS and NIS are usually installed together, each one is independent of
the other and each one is configured and administered individually.

As we mentioned earlier, NIS/NFS is very popular but it suffers from severe
security exposures. In Figure 14 on page 25 you see one of the most common
threats in an NIS/NFS environment. An intruder system can be plugged into the
network and masquerade as another identity. It then can intercept data (lack of
confidentiality), interrupt the service (lack of availability), and modify the data
(lack of integrity).

24 Using and Administering DCE

Client Process || RPC Request - Server Process

¢
el .=

€1 Fake RPC Reply X 1 RPC Reply |¢—]

NIS Client NIS Server

Intruder

Figure 14. Security Breach in a NIS/NFS Environment

Security improvements are being made, but NFS and NIS were originally
designed with one goal in mind: to share file systems and resources on the
network. Security was not an issue. A security architecture for NIS/NFS will
require a complete redesign of such a distributed environment. This would cause
an obvious problem of interoperability with existing NIS/NFS installations.

1.3.5 IBM HACMP/6000

IBM AIX High Availability Cluster Multi-Processing/6000 represents an important
feature that combines software and hardware to minimize down time by quickly
restoring services when a system, a component, or an application fails. While
not instantaneous like fault tolerant or continuous availability systems, restoring
services is rapid and usually takes only a couple of minutes.

HACMP/6000 features are needed in business critical applications such as order
processing, debit/credit transactions in banking or hotel reservations and others.
Particularly in conjunction with RAID disks HACMP/6000 provides a stable
environment for RDBMS applications.

Raw RS232

Figure 15. The HACMP/6000 Environment.

HACMP/6000 guarantees no single point of failure and operates in three modes:

Chapter 1. Introduction 25

26

Idle standard known as mode 1

One machine is sitting idle and watching the other one. If the other one
appears the be dead, it takes over the disks and the IP address.

Mutual operation takeover known as mode 2

Both machines are doing work. Some of the disks are assigned to one, the
rest of the disks to the other machine. Both are watching each other, ready
to take over the others resources.

Concurrent operation takeover known as mode 3

They actually share the disks and are able to concurrently access them.
Special daemons control and serialize competing disk access requests.
Programs running in this mode such as ORACLE** Parallel Database Server
have to use the special API provided by those daemons.

HACMP/6000 requires extra hardware to operate correctly, such as two TCP/IP
link attachments per cluster node, a direct serial connection, and shared
(twin-tailed) SCSI or serial disks. It is supporting configurations of AIX DCE and
Encina in mode 1 and mode 2 with the restriction that DCE services are running
only on one machine.

AIX DCE Servers such as CDS and Security have been tested in environments
where the servers can fail over to a second RISC System/6000* in hot-standby,
rotating standby, and one-sided takeover configurations. These are all special
cases of a mode 1 environment. See 5.6.1, “HACMP/6000 Support for DCE” on
page 273 for more explanations on these different mode 1 configurations.

Both security and CDS servers can be replicated within DCE, but if the system
containing the master database fails, write access is not possible anymore.
Tickets can be issued from a slave security server, thus leaving the cell
operational. However, if for any reason write access to the security registry is
always required, the master security server must be in a HACMP cluster. CDS
is a little bit different. When application servers start, they export their binding
information into the CDS namespace. Also the program offering Single
Login/6000 introduced in 5.4, “Single Login/6000” on page 235 requires write
access to CDS to store user login information. So, running CDS in an HACMP
cluster always makes sense, if the directories to which write access is needed
are not distributed.

All the write access will continue to work properly guaranteeing the most
reliable DCE cell environment. For more details on this topic see 5.6, “DCE on
IBM AIX High Availability Cluster Multi-Processing/6000” on page 272.

Using and Administering DCE

Chapter 2. Planning DCE Cells

This chapter intends to give planners and administrators all the information they
need to lay out a cell with all its servers and clients based on customer and
business needs, but also being aware of the technical feasibility and efficiency.

It summarizes the experiences we made during our testing or in discussions
with development. It should also help provide a basic understanding of the DCE
planning issues to readers not interested in technical details.

It explains, to a certain extent, how the different base components work, as well
as, the technical restrictions implied by the DCE core servers and DFS. A
planner must understand this to be able to design a solution for a customer
which makes sense regarding:

Reliability
Availability
Security
Performance/Efficiency
Cost

This chapter is organized in the following way:
2.1, “General Considerations for DCE Cell Design”
2.2, “Technical Implications Imposed by the Core Components” on page 29
2.3, “Sizing Guideline” on page 31
2.4, “Planning the User Namespace” on page 33
2.5, “Planning the CDS Namespace” on page 34
2.6, “Conclusions and Planning Tips” on page 35

2.7, “Planning Summary” on page 40

2.1 General Considerations for DCE Cell Design

Todays client/server computing systems are not only based on communication
protocols and peer-to-peer connections but on a real network operating system.
DCE is such a network operating system and its functionality is as powerful as
most of the known single node operating systems such as UNIX.

Based on the experiences we made during this project, we would like to give
you some guidelines on how to design a DCE cell.

Prior to installing and configuring DCE, it is very important that you plan and
design your cell carefully. Several aspects have to be taken into account.
Therefore, you must clarify several questions beforehand:

1. Are you familiar with the different DCE core components?

In order to understand how a DCE cell has to be designed, it is absolutely
crucial, that you really understand the core components of DCE and the way
they work. For example a high performance network does not improve your
DCE performance when the preferred binding handles point to a slow
interface. Or skulking over slow links (for example a 9600 baud connection)

[J Copyright IBM Corp. 1994 27

may slow down the operation of your whole cell, if it is done too frequently.
These are just two examples of things which can happen.

2. How is your company structured?

How large are the branch or regional offices (branches)?

How many and what kind of network services do the branches need?
How does the business data flow?

What kind of data and service access needs are there between branches
and the main site?

What kind of data and service access needs are there from branch to
branch?

What is the amount and frequency of such data access?

The answers to these questions will help to decide whether we need a single
or multicell design.

3. Does your company have naming conventions?

Naming conventions are not only important for DCE but also for many other
Information Technology (IT) areas. It is the base for security, stability,
reliability and accessibility in a network. Once you assign a name to any
type of entity in a complex networked environment, it becomes very difficult
to change it when necessary. To make changes is always more expensive
than to carefully plan ahead.

4. Does your company have security conventions?

Most companies have security conventions or even a security department
which takes care of all the security issues within the company. Since
security is a major strength of DCE, it is absolutely necessary to get these
people involved in your activities or at least to take their rules into account.
Questions such as:

Where should a security server be placed?
Does a security server have to be a dedicated system?
Who is responsible for all user information?
Who is responsible for access control lists?

are very important and must be answered properly in order for DCE to be
part of the technologies that satisfy the company's security policy.

5. Does your company have system administration conventions?

System management for distributed systems becomes more and more
important as the size and the complexity of the distributed environment
grow. The main disciplines of open client/server system management are:

Configuration and change management
Security management

Inventory, monitoring and reporting
Operations management

Client/server application management
Network management

Helpdesk

While designing a DCE environment, you should consider who has to take
care of these issues and how they are being solved. It may have an impact
on how you will place certain services/servers and/or what kind of tools you
are going to use.

6. Does your company already have any network operating systems?

28 Using and Administering DCE

If your company is already using other network operating systems than DCE,
which is likely, you must consider how these different systems can coexist.
In certain cases, these systems do not only have to coexist but to
interoperate with each other. For example, if you are already working with
NIS, you probably have also installed NFS. As you are going to set up
DCE/DFS, you will want to integrate NFS into your DCE/DFS environment.
This may have an impact on where you place your services within your
network.

7. What are the physical connection possibilities between the branches of your
company?

Your physical network has a big influence on where you place which
services. Maintaining replicas through a slow communication link, may slow
down the whole cell, or at least particular functions.

All this means, you must understand the way your whole company works, rather
then just having IT experience. In the following sections we will discuss the
considerations for designing a cell in more detail.

2.2 Technical Implications Imposed by the Core Components

2.2.1 Replication

This section describes how the core components work with regards to planning
of the cell layout. The aspects to look at are:

Replication capabilities

Server selection mechanisms

Capabilities
All DCE core and DFS servers can be replicated. Replication means that there
are multiple instances of the service available in the cell, each of which controls
its own copy of a replicated database.

So, there are multiple copies of the same databases in the cell, but each type of
database has one master copy and possibly several read-only copies. Changes
can only be made to the master copy. As long as the applications, or the core
service clients respectively, only need read access, they can call any of the
available servers. This increases:

Performance: load balancing

Availability: if one server fails, another can do the job

Since most of the accesses to the DCE core service databases are read-only, it
makes sense to exploit these replication capabilities. Even to DFS many
accesses are read-only. However, replication done the wrong way can cause
slow operation of the whole cell.

The way in which the various DCE components replicate their data is different.

2.2.1.1 Security Replication

The security server has one master server which holds the master database.
Replica servers can be configured. They hold a copy of the entire registry
database. The administrator does not need to configure anything, the replica
databases are automatically created and updated, when the replica server is
configured.

Chapter 2. Planning DCE Cells 29

2.2.1.2 CDS Replication

The CDS database is called a clearinghouse. It is tree structured and has
directories which can contain further directories or leaf objects. Replication is
defined on a per directory basis. Each copy of a directory is called a replica. All
copies of a certain directory build its replica set. One of these replicas is the
master replica, the others are read-only replicas.

Since replication is on a directory level, the CDS database is a distributed
database. The master replicas of all directories in the namespace tree can be
distributed over several clearinghouses.

In order for replication to happen, the administrator must define every detail. He
must explicitly create replicas, define the replica set with a master, and must
define the skulking intervals. Skulking is the process of copying a directory’'s
content to all read-only replicas.

2.2.1.3 DFS Replication

DFS administers its own namespace. In the CDS namespace it is just known as
a junction. It uses a special global path name, which follows the global naming
convention, to locate the binding information to a DFS name server. So the root
of the DFS cell file system /: is resolved to the global name /.../cell_namel/fs,
which is an object in CDS.

The DFS name server is actually called the DFS Fileset Location Database
(FLDB). It stores the location of all filesets in DFS, which are DFS file server
addresses.

When a DFS client wants to access a file, it first has to contact the FLDB to ask
for a DFS file server address. This involves a read access to the FLDB. Then
depending on the type of access desired, you either get the address of the file
server with the master copy of the file or the address of one of the replica
servers with a read-only copy of the fileset.

The FLDB and fileset data can be replicated.

Replication of the FLDB is achieved by just adding another FLDB server.
Nothing more can be configured. The FLDB servers organize themselves. By
means of the ubik library routines they determine a master server. The master
server holds the master database and the ubik routines update the databases of
the slave servers. All servers hold the entire FLDB.

DFS data is replicated on a fileset level. One copy is the read-write copy and
others are read-only copies.

DFS also provides a fileset backup server that can also be replicated.

2.2.2 Server Selection Mechanisms

30

The clients to services that can be replicated as described in the previous
section all use a random server selection. If a DCE client or even another server
needs access to one of these services, they call CDS for an address, a binding
handle. These calls go to a CDS object which is an RPC group entry. The RPC
group contains a list of servers with the same capabilities. The requester can
get all these addresses one after the other. Depending on the call used, the
sequence is either in the order the binding handles are stored in CDS or it is a
random order. All the above DCE servers use the random method. This is

Using and Administering DCE

basically adequate to provide load balancing, but it can introduce a performance
penalty, if a server is connected via a slow WAN.

This is why special care must be taken for the choice of locations for replica
servers.

Some services allow specifying preferences for a specific server. This option
can be used, if you have to implement replication over a WAN.

However, specifying certain preferences means manual configuration. Before
you make use of this option, you should estimate the potential benefit. Only if
access to a server is mostly a read access and the service is accessed very
frequently would you care where the calls go.

2.2.2.1 Security Service

The security service calls have a fallback method for locating the security
service, if CDS is not available. The binding handles of all security servers are
stored in the file /opt/dcelocal/etc/security/pe_site.

If an environment variable BIND PE SITE is defined, the security calls bypass CDS
and get the binding information from that file. However, this requires manual
configuration (editing) of this file on all client machines. See “Security” on

page 73 for a discussion on this topic.

2.2.2.2 CDS

CDS has no option to bias the cds_clerk on which clearinghouse it should use.
The cdscp set preferred clearinghouse command is only used for the cdscp
command itself. However, the CDS clerk knows which clearinghouses are on the
same LAN and it always tries this clearinghouse first, whenever possible.

2.2.2.3 DFS
The selection of the FLDB is random. Nothing can be configured.

The DFS client can specify a preferred file server or even a list of preferred file
servers with priorities. The command is cm setpreferences. If the user does not
specify priorities, the cache manager assigns default priorities according to
whether there is a file server on the local machine, in the same subnetwork, in
the same network, or in a different network. The lowest number has the highest
priority.

2.3 Sizing Guideline

There are two aspects to this, static sizing ("How much resource do | need on
my servers to support X users and Y client machines?") and dynamic sizing
("How much resource do | need if Z users are running applications generating N
requests per second?").

2.3.1 Static Sizing

For the case of static sizing, any disk growth will take place in /var. Each extra
user will take a little bit more registry space. Some quick experiments with
adding a thousand principals and accounts show a pretty linear growth of 960
bytes per additional user in disk space requirements. Memory usage was less
straightforward, presumably because the storage mechanism is a Btree, but at

Chapter 2. Planning DCE Cells 31

the upper end the dominant factor seems to be a linear increase of about 3-4K
per additional user.

Adding more client machines will take additional entries in the namespace. For
each client, there is a new directory under /.:/hosts and three entries in that
directory for the cdsclerk, rpcd and profile. Some quick experiments adding the
entries for a thousand client machines show a pretty linear growth of 1.4K per
additional machine in disk space requirements. Memory usage increased by
about 1.7K per additional machine. Remember, cdsd logs all changes as
transactions, and checkpoints them daily, or when you shut down the server.
You need to have enough room in /var/dce for two copies of the checkpoint file
(old and new) plus the transaction log.

Additional clients are not the only contributor to namespace entries, though. The
primary user of CDS is applications. So the size of your namespace is going to
be very dependent on the applications that you develop and run. The highest
we've taken these experiments so far has been 100,000 users and 100,000 client
machines. The only limitation you're likely to run into is with the registry, since
each security server holds the entire registry in memory. Thus the main
limitation will be how much virtual memory you can make available for the
security servers.

2.3.2 Dynamic Sizing

32

Dynamic sizing is a more difficult question. As an example, in a typical question:

We are responding to a request for information (RFI) which requires a single
DCE configured cell to serve a potential of 100,000 registered users and
20,000 concurrent users. Each active user is expected to use between 1 to 2
transactions per second (TPS) with the servers in the cell. Some of my
questions are :

1. How do | determine the number of machines to use in this cell?

2. What benchmarks should | use for the machines sizing to support the
20,000 concurrent users ? Is tpcA (Sybase C/S) a good indicator?

3. Is there any information available which tells you how to size for DCE
applications?

The 100,000 registered users is a static number. The 20,000 concurrent users
using 1-2 TPS is a dynamic question. That is going to depend very much on
what the applications are doing. For example, if your users all dce_login once in
the morning, then start up a long-running application client that makes one CDS
lookup to find its server and then uses that server for the rest of the day, the
security and CDS servers are only going to see one request a piece from each of
those 20,000 users per day. If, however, the users start a new client for each
transaction, then the CDS server will be seeing 20,000 requests per second.
That's a big difference.

There's also the application servers themselves. The sizing of these is going to
depend on how heavyweight the transactions are. For example, compare the
TPC-A** benchmark, where numbers are expressed as transactions per second,
to the TPC-C benchmark, where numbers are expressed in transactions per
minute. A server is going to be able to support several orders of magnitude
more TPC-A clients than TPC-C clients.

Using and Administering DCE

So dynamic sizing is going to take several steps. First you need to figure out
what load your application will be putting on the security and CDS servers, and
from that figure out the server resources required. For a very rough estimate
assume a model 95 OS/2 or a model 520 AIX CDS server can handle about 500
requests per second, and scale upward to the size machine you want to use.
Since CDS keeps its directory in memory, it should be CPU-bound and scale
about the same as standard benchmarks. We don't have any good numbers on
the security server, but it tends to have a lot less interaction with applications.

2.4 Planning the

User Namespace

Users working on a system are identified by means of their user ID (UID). All
activities of users are associated with their UID and can be tracked back, if
accounting and audit features are configured accordingly. Access to files or
permission to run a certain process are granted to certain users and groups.
UNIX traditionally only distinguishes access rights for the owner, the primary
group, and others. But with higher security requirements customers tend to
deploy Access Control Lists (ACLs) which allow a much finer granularity of
access control.

The flexibility of ACLs has its price. ACLs need a lot more administration. This
is where groups come into play. It is good practice to basically define only
groups into ACLs of objects and not single users. The advantage is that the
number of ACL entries is lower, the ACL itself is more static, and the granting of
rights to users is much easier, because they have to be added to or deleted from
groups.

The purpose of this discussion is to show the importance of careful planning of
the user and group namespace. Before you define users and groups, you should
decide on:

Security policy for all objects in the DCE environment
Present and future cell layout within the entire company

Amount of intercell access, in the case of multiple cells

If a company decides to implement multiple cells, the user names and UIDs
should be unique across these closely related cells. This will make the job of
joining cells much easier, should that ever be necessary. If there is a lot of inter
cell access, having unique UIDs is:

Useful with DFS so that a company wide unique user name is shown as
owner of files when a directory is listed.

Required at least for global users when Single Login/6000 is used. Global
users as defined in this product are those, who are allowed to go to another
cell's machine and login with authentication from their home cell. Their UIDs
and names as defined in their home cell are added to the local /etc/passwd
file to give them a local identity.

Chapter 2. Planning DCE Cells 33

2.5 Planning the CDS Namespace

34

The Cell Directory Service (CDS) is a distributed, replicated database service. It
is distributed because the information that forms the database is stored in
different places. CDS consists of a hierarchical set of names which is called the
namespace. Each name has a set of associated attributes. Given a name, its
associated attributes can be looked up through CDS. For example, given the
name of a print server, the directory server can return its location. This
information is kept in the clearinghouse. A clearinghouse is a physical CDS
database; a collection of directory replicas. By replicating a particular directory
in different clearinghouses, you can increase the accessibility as well as the
availability of information. On the other hand, the more replicas we have on
different systems, the more complex the cell becomes.

Cell-Profile]

| Lan—Profile
| evl ch I

G

cds—clerk | }-------- =
O = directory
| ds—servi | = leaf
s] leaf object

dts—enti

Figure 16. Example of a Cell Namespace

Based on the experiences with our scenarios, we can give you the following
recommendations for building a CDS namespace:

1. Keep it simple! Start with one centralized clearinghouse which contains all
master replicas and another one that contains all read-only replicas. This
ensures the availability of the namespace.

2. Have your first hierarchy (right after root), location dependent. Put all
objects or directories particular to a specific location in the location
dependent directory. This allows you to have further clearinghouses created
at the locations if necessary, which can help to improve accessibility of DCE
services at the location sites. If necessary you can eventually define the
master replicas of these directories on the locations where they are mostly
accessed. This is useful, when many write accesses occur from only one

location.

Using and Administering DCE

3. Do not use soft links from one location to another. This makes you very
dependent on other locations which also means, that it becomes more
complex to manage a large cell.

2.6 Conclusions and Planning Tips

This section will summarize the experiences we made while working with the
different scenarios and give recommendations for cell layout with respect to
possible customer requirements, technical facts, and geographical aspects
(network topology).

User requirement considerations:

Business data and service flow
Performance

Availability

Security

Cost

Technical implementation considerations:

Server selection mechanisms
Replication capabilities

Geographical considerations are:

Business data and service flow
Reliability of the Network
Transmission speeds and bandwidth

Combining all these factors and trying to come up with an optimal solution is not
an easy, not to say impossible, task. Like any other decision it will result in a
compromise. So, we cannot suggest concrete solutions, but we can give general
recommendations and point out consequences of certain decisions.

2.6.1 One Cell or Multiple Cells?

One of the most important things you have to think about when you start to
implement DCE at your company is the work and data flow of your business.
This is dependent on:

Structure of the company

Are there remote locations, called branches hereafter

Type of business

How large are the branches

How many and what kind of network services do the branches need
How is the business data flow

Data and service access needs between branches and main site
Data and service access needs from branch to branch

Amount and frequency of such data access

There is no general recommendation for designing a DCE environment. Roughly
we can say, if your company concentrates on one business area with a high
degree of dependencies between its departments, it could be a good candidate
for a one cell scenario (example banking). The opposite of that could be a
company which is working in different business areas with many independent
departments (example university).

Chapter 2. Planning DCE Cells 35

2.6.2 Tips for Service Layout and Application Design

36

What a DCE user perceives is how the application performs and whether it is
reliable as far as availability is concerned. This actually depends on many
different factors:

Application architecture and implementation in DCE

How robust is the application (replication)

How does the application cope with more users and data

How does the application use the DCE core services

How often does an application use the DCE core services

How fast are the network connections

How robust is the network

How robust are the DCE core services (replication, availability)

The term robust stands for the ability to deal with error conditions and provide
high availability.

Once the decision is made about the number of cells a company is going to
need, each cell has to be designed. For that decision we believe that
performance and availability aspects are the main issues, which means ease of
use and reliability. Another high priority is ease of administration.

So, technical issues are the deciding factors for the cell layout rather than
business needs. From a user perspective it is not so relevant where the
services or data are, but that they are easily and reliably accessible. However,
business needs are the most important factors for DCE application design.
Applications have to serve a certain business structure and have to make use of
the technology to optimally achieve that. The application implementation should
be such that installations can follow the same layout rules as for the core
services outlined below. Last but not least the application should be able to
respond to growth, it should be scalable.

The following sections discuss each of the above listed technical aspects.

2.6.2.1 Application Architecture and Implementation in DCE
Applications are mainly designed according to business needs and data flow.
The implementation should make the best use of DCE technology to provide the
necessary performance, availability and scalability.

2.6.2.2 How Robust is the Application (Replication)?

Applications should implement replication of their servers, whenever possible.
This increases performance and availability. If the application involves data
access, replicated or distributed data storage is necessary. This requires
coordination among the replicated application servers. For that it is important
whether data access is mostly read or write.

For a data access model there are different solutions possible, ranging from a
networked file system like DFS as a very simple model to a state-of-the-art
three-tier transaction model with a powerful database as the backend. See also
1.1.2, “Three-Tier Client/Server Model” on page 4.

Using and Administering DCE

2.6.2.3 How Does the Application Cope with More Users and Data?

An application is scalable when the administrator can install additional instances
of the same service and the load from the clients is equally shared between all
of the servers. This is what is described in the above item on replication.

2.6.2.4 How Does the Application Use the DCE Core Services?

The application server should export its interfaces to CDS when it starts and
remove them when it ends. This allows for load balancing, provided that
replication is implemented. On the other hand it saves clients from nasty
timeouts which can happen, if a server stops but its interface information is still
available from CDS.

The client side of the application should in turn be ready to try another server
address when receiving a communication error, because one server is
unavailable. If this happens, the application client should immediately request
new binding information from the CDS database rather than from the CDS clerk
cache, thereby forcing a refresh of the clerk cache. That also saves other clients
on the same machine from getting the same invalid binding information.

Furthermore, the application should provide a configuration option for the clients
to declare a preferred server location. This is important in cells which involve
slow communication links where you want to prevent RPC calls from using too
many of these.

From a CDS point of view, application servers should use RPC groups, which are
able to provide a random selection of server interfaces to application clients.
Application clients should select the servers that make sense, that is use servers
on the LAN as opposed to going across a WAN to get to the identical server
interface. To do so, they should use string bindings and explicit binding handles
to be able to inspect the binding information received from CDS and select the
closest one or one according to their configured priorities.

2.6.2.5 How Often Does an Application Use the DCE Core

Services?

This question must be answered to find out how sophisticated the layout of the
core services needs to be.

If users log in once in the morning and start up one or two long running
applications, the usage of security service and CDS is low. Performance aspects
of security service and CDS are not critical. You only have to make sure the
services are available.

On the other hand, if users login several times a day and use many different
applications, or if a lot of applications are started and stopped again, security
and CDS services are used frequently. CDS experiences a lot of write access, if
application servers start and stop. In such a situation performance is an issue
and the cell layout has to take this into consideration.

2.6.2.6 How Fast are the Network Connections?

If you have a company with a main site and several branch offices and you have
decided to implement just one cell, the type of network connections have a big
influence on the layout of the servers.

If all connections are fast and have enough bandwidth, you do not have to care
where and how your DCE service calls travel.

Chapter 2. Planning DCE Cells 37

38

2.6.2.7 How Robust is the Network?

This is actually the key to the availability of the whole DCE cell, if remote
locations are involved. For any type of topology you want to make sure that any
single part of the cell, which means each LAN, can continue to work, if it is
separated from the rest of the cell.

You could achieve this to a certain extent by replicating all services into each
LAN, which can be a local segment or a distant LAN. This requires a lot of
server licenses, is expensive to administer and, if used with slow WAN
connections, can decrease performance in the whole cell. You could never
guarantee write access to the servers.

We suggest implementing redundant network connections and relying on
dynamic network routing for high availability of DCE services. The best solution
is a reliable multi-protocol router network. This can offer dynamic routing or
even dynamic load balancing or bandwidth assignment. On the low end, you
could install a cheap switched line with SLIP which is only used when the
primary link fails.

If you have a robust network, you can concentrate on performance issues for the
cell layout.

2.6.2.8 How Robust are the DCE Core and DFS Services?

Or in other words: how good is the design of the DCE cell?

From an availability point of view, you would have to replicate all services to
each separate local or distant LAN. From a performance point of view, this
would lead to calls travelling all over the cell and slowing down operation of the
whole cell, especially if slower links are involved.

We suggest implementing a reliable network to achieve high availability and
concentrating on performance issues for the layout of DCE services in the cell. If
there are no slow links, you can just replicate services to achieve load
balancing. Note that all remote locations connected with fast links (fiber links
and ATM or FCS protocols) are not considered as remote in the following
discussion.

If the cell topology includes slow communication links and replication of services
is required across such links, the replication capability of each component has to
be considered separately.

In the following sections we want to look at replication to locations connected via
slow WAN links. We discuss the replication capability of each DCE component
and how preferred servers can be defined to avoid unnecessary calls over the
slow network connections.

CDS:

See also 2.5, “Planning the CDS Namespace” on page 34. CDS supports
replication on a directory level. CDS clients have no option to set a preferred
CDS server. The CDS clerk knows which clearinghouses are in the same LAN
and tries to access these whenever possible. If data is not available in the same
LAN, the call randomly goes to any server that has the requested data. The only
possibility we have to control where the calls go, is to make sure that the
requested data is in the location from where it is requested most often.

Using and Administering DCE

Start off with a simple CDS configuration. Design the namespace so that objects
or directories are grouped together locationwise, if possible. Keep all master
replicas in one clearinghouse, which means do not distribute the CDS. Replicate
the CDS only in the main site and never over slow links.

If you get performance problems because of this CDS configuration, you can
install CDS servers in the remote location that has the problem and install
replicas of these location specific directories. Directories which are used by all
locations should not be replicated to a remote location, because all locations not
having a replica would randomly access also this remote location over the slow
link.

If you want to avoid any calls for location specific objects to the central site,
move the master replica to the remote site. If you want to have a copy of it in
the central site for backup purposes, you can create a separate clearinghouse in
the central site, create a read-only replica in it, and disconnect it to prevent it
from being regularly used. To refresh this backup clearinghouse you would have
to connect this clearinghouse regularly and trigger a skulk from the master copy.

Security:

Start with a security server on the same machines as the CDS servers, so that
these two core components can optimally work together.

The security server database is replicated as a whole. Start replicating it in the
central site only. If security service access becomes a performance bottle neck,
you might consider replicating it to large remote locations. But as soon as you
do that, you want to make sure security access calls go where you want. So you
have to work with the pe_site files as described in 2.2.2.1, “Security Service” on
page 31.

DFS FLDB:

If the DFS FLDB is replicated, which DFS file server a DFS client accesses is
randomly chosen and not configurable. The ubik routines determine among
multiple copies of the database which one is the master and there is no
possibility to configure which FLDB is going to be contacted by DFS clients.

Therefore replicate it for performance and availability reasons, but only in the
main site. Completely avoid an FLDB across from a slow WAN link.

DFS Data:
The DFS clients can be biased as to which DFS file server they should try to use.

Design the DFS fileset hierarchy so that subtrees of the file system can be
grouped locationwise into filesets. Start off with central DFS file servers. Install
file servers in the remote locations as soon as there is demand for it. This might
be because of the size of the location or the amount of data accessed from this
location or because of the network connection. Of course in large cells this
might happen on the first day.

Once you start implementing file servers in the remote sites, location specific
files should be located where they are used. If they are used mostly for writing
or updating, then the read-write copies should be out in the locations. For
filesets which are mostly accessed for read, it makes sense to replicate them

Chapter 2. Planning DCE Cells 39

and have for instance one copy in the central site and as many copies as
necessary for a good load balancing on the remote sites.

Filesets which are accessed from all remote locations should have their
read-write copy in the central site. When they are accessed read-mostly they
can be replicated and replicas can be in the remote locations as demand
requires. To make sure the DFS access calls stay within the remote location,
you need to set the preferred file server(s).

2.7 Planning Summary

40

We have discussed planning relevant issues in several sections throughout the
first three chapters of this document. The following is a list of the most
important references:

2.6.1, “One Cell or Multiple Cells?” on page 35

2.4, “Planning the User Namespace” on page 33

2.5, “Planning the CDS Namespace” on page 34

2.6.2, “Tips for Service Layout and Application Design” on page 36
Chapter 3, “Implementing DCE Cells” on page 43, performance and
availability discussions in each scenario

The above referenced sections can be summarized into the following planning
tips:

Decision for one or multiple cells

This decision is dependent on the structure of the company and the type of
business it is running. If there is a main site and many branch offices and
their business requires a lot of data exchange among each other and they
have common data, it is a candidate for a one cell environment.

Plan your user namespace

Use unique user names and UIDs throughout the whole company, if you
decide to have multiple cells. It is much easier to migrate users from one
cell to the other or to join cells, should this ever become necessary.

Plan your CDS namespace

Begin with a simple non-distributed CDS server layout, which means all
master replicas on the same machine. Create location specific directories
which contain all objects or subdirectories that are mostly used in a specific
location. This enables you to easily create secondary CDS servers in remote
locations and move the master copies of their directories and objects to
these servers, if you see performance problems with the central CDS server.

Plan your DFS filespace

You can choose basically the same approach as for CDS. Create location
dependent directories and fileset mount points that are high up in the file
hierarchy. This makes sure you have shorter path names and their
resolution does not have to hop from network to network. Create separate
filesets for entities that might have to be moved between locations as a
whole, such as users.

For availability rely on the network

Implement redundant links either with a multi-protocol router network or via
switched backup lines. The underlying network can have sophisticated

Using and Administering DCE

dynamic routing capabilities, whereas DCE relies on the error handling
implemented by the application programmer.

Do not export any (slow) WAN interfaces into CDS

Again rely on the routing capabilities of the network and exclude all
interfaces not associated with a LAN. Use the environment variable
RPC_UNSUPPORTED_NETIFS. This prevents clients from trying network addresses
which might be temporarily unavailable or do not follow the fastest path.

Layout of DCE services only for good performance

If there are no slow links in the cell, you can put replication servers
anywhere to achieve load balancing. If you have slow links or pay the links
based on data volume, replication has to be planned very carefully. With
inadequate replication you might experience slow performance in the whole
cell, because server selection is completely at random and may lead to
unnecessary calls over the slow links. Each component has its own specific
characteristics, for details see 2.6.2.8, “How Robust are the DCE Core and
DFS Services?” on page 38.

As a very simplified summary of Chapter 2, “Planning DCE Cells” on
page 27 and Chapter 3, “Implementing DCE Cells” on page 43 we suggest
the following layout for production cells:

— In a LAN install all master servers on one machine and replica servers
on one (or more) other machine(s) as in 3.1.2, “Scenario 2: Master
Servers on One Machine and Replicas on Another” on page 48.

— For a production cell that goes across slow links install and replicate the
servers on the main site as described above for a LAN environment.

- If remote locations are small, install only DCE clients there but install a
secondary communication link for increased availability as described in
3.2.5, “Scenario 6: A Branch Connected with Two Links” on page 81.

- For larger remote locations, where you want to install replicated
services, replicate on only those parts of the server databases that are
relevant for a specific remote location and define preferred servers, if
possible. Each component has its own specific characteristics, for
details see 2.6.2.8, “How Robust are the DCE Core and DFS Services?”
on page 38.

Follow the development guidelines when designing DCE applications

Users work with DCE applications and not as much with the core services.
The core services must be well planned and layed out to provide a good
basis for the applications. It is very important that the application is
designed and implemented properly to provide high performance and
availability through replication and avoid unnecessary timeouts by correctly
handling interface exports to CDS. See also 2.6.2.4, “How Does the
Application Use the DCE Core Services?” on page 37.

Use HACMP/6000 for highly available write access

Put the DCE core services, DFS, or any application server on HACMP/6000,
when you need to guarantee write access all the time. However, be aware
that, upon a takeover, DCE is restarted on the fallback system and long
lasting client/server connections will be interrupted and may not be able to
survive the takeover. What this means, is that applications using context
handles will lose their context and have to restart also the client side. Write
access to CDS is needed when applications export and unexport their

Chapter 2. Planning DCE Cells 41

interfaces. If they do so, you might be unable to start these applications,
when the CDS master directory is unavailable. Write access to the security
registry is only needed to add or change for example accounts. Tickets are
granted without write access.

42 Using and Administering DCE

Chapter 3. Implementing DCE Cells

To gain experience with different topologies, cell layouts, and administration
issues we decided to implement different scenarios. Our approach was to
create scenarios based on different technical aspects rather than to try to
describe examples of business areas and possible solutions for them. We
figured that many different businesses would end up with the same cell layout
based on abstract factors such as:

Amount of central data or service access

Need for interchange of data and services between branch offices,
subsidiaries or even other companies

Size of branch offices
Availability requirements
Interoperability with other systems, clusters, and so on
Growth expectations
Cost
It is much easier for a customer to decide what abstract or technical solution fits

his business best when he knows what he should pay attention to. The
scenarios we were looking at can be divided into the following groups:

1. Local (LAN-type) scenarios

2. LAN/WAN scenarios

3. NFS/NIS environments

4. High availability (HACMP) scenarios

This chapter covers the first two scenario groups. We look at different network
topologies and vary the placement of the different core services. We provide
step-by-step implementation instructions for eight selected scenarios to enable
the reader to do a quick installation of each scenario. Besides configuration
instructions we also document our experiences with the different environments
and discuss performance and availability issues.

The NFS/NIS environment and HACMP/6000 are actually topics that are equally
relevant to all of the above scenarios and can, as well, be treated separately in
the task-oriented Chapter 4, “Administering DCE Cells” on page 83 which
describes different administrative tasks.

For an overview of our test environment with all IP addresses, host names and
machine configurations see Appendix B, “Description of the Systems in our
Scenario” on page 279.

3.1 Local (LAN-type) Cells

This section discusses cell topologies which can be considered a local
environment without slow communication links. The simplest case is a single
LAN with all nodes attached to it. Also a much more complex topology with
bridges and routers in between multiple LANs can logically be thought of as a

[J Copyright IBM Corp. 1994 43

44

LAN. These LANs can be directly connected by a router or a bridge or they can
be part of Metropolitan Area Network (MAN) with fast connections such as:

Fiber Distributed Data Interface (FDDI)
Asynchronous Transfer Mode (ATM)
Fiber Channel Standard (FCS)

An example can be a university campus with a FDDI backbone dropping off
several Ethernet LANs in each different building or even on different floors in all
the buildings.

This section concentrates on logically pure LAN topology. If there are bridges
and routers involved, we assume that the router network provides a fast and
reliable environment to be logically considered as a single LAN. We describe
step by step how to configure a DCE cell with the following different layout of the
core services:

All services on the same server, no replication
All master service on one server and replicated servers on another
Master and replica servers on different nodes

We provide all commands to create each specific scenario such that there is a
complete guideline which can be followed. For more explanations, sample SMIT
screens, and command output see 4.1, “Configuring a Cell” on page 84.

Using and Administering DCE

3.1.1 Scenario 1: All Servers on One Machine without Replicas

SCENARIO1 °°_,

DGE Clients
DCE DTS Local

]

ev4

DGE Clients
DCE DTS Local

Figure 17. Scenario 1: One Server Machine - No Replicas

3.1.1.1 Preparation Steps

Before you configure any of the DCE machines you should have:

Created the necessary file systems
Checked network name resolution
Checked network routing

Checked the network interfaces
Synchronized the system clocks
Installed DCE (last of these steps)

For details see 4.1.1, “Preparing for DCE Configuration” on page 84.

3.1.1.2 DCE Configuration Steps
Following are all the configuration steps for this scenario.

Configuring machine evl
1. Configure the core components
#mkdce -n itsc.austin.ibm.com sec_srv cds_srv dts_local
Test a few commands to see if DCE is working correctly:

#dce_login cell_admin cell_password
#rgy edit -v

#cds1i -world

#rpccp show mapping

#exit

2. Configure the DFS components:
a. Configure the System Control machine
#mkdfs dfs_scm
b. Configure the DFS Fileset Database machine:
#mkdfs dfs_fldb

Chapter 3. Implementing DCE Cells

45

c. Configure the DFS File Server Machine: The -e flag loads the DFS kernel
extension for now and for subsequent restarts.

#mkdfs -e dfs_srv
d. Configure the DFS Client machine:
#mkdfs dfs_cl
e. Create an aggregate for the root.dfs fileset:

#mklv -t 1fs -y 1fsroot rootvg 1
#newaggr -aggreg /dev/1fsroot -b1 8192 -fr 1024 -overwrite

f. Export the root.dfs fileset:

#mkdfs1fs -r -d /dev/1fsroot -n 1fsroot
g. Login as cell_admin:

#dce _login cell_admin cell password
h. Try to access the DFS filespace:

#cd /:

For the first access, you normally have to wait a minute. If you are not
successful, try again after one minute. The DFS server always goes into
TSR mode (Token Status Recovery) even though there has not been any
data access by any client.

i. Create another fileset:
Create a logical volume /dev/usrbin with five blocks of 4MB:
#mklv -t 1fs -y usrbin rootvg 5
Create an aggregate on the /dev/usrbin:
#newaggr -aggreg /dev/usrbin -bl 8192 -fr 1024 -overwrite
Export the aggregate:
#mkdfs1fs -d /dev/usrbin -n usrbin
Create a fileset with mount point:
#mkdfs1fs -f usrbin.ft -m /:/usrbin -n usrbin

Test that the fileset is correctly exported:
#fts 1sfldb

Configuring machines ev2, ev3, ev4
1. Configure the core components for ev2:
#mkdce -n itsc.austin.ibm.com -s evl sec c1 cds _cl dts local
Test a few commands to see if DCE is working correctly:

#dce_login cell_admin cell_password
#rgy edit -v

#cds1i -world

#rpccp show mapping

2. Configure the DFS components for ev2:

#mkdfs dfs_cl

Test a few commands to see if DFS is working correctly:

46 Using and Administering DCE

#fts Isfldb
#cd /:
#1s -al

3. Repeat above steps for ev3 and ev4:

3.1.1.3 Scenario Experiences

If configuring the DFS server is not successful the first time, you must clean all
RPC mappings and CDS caches and reboot the machine. Use the script file
cleanup_cache we provide on the diskette with this document to clean all
mappings and caches, if this problems happen to you. See also 4.4.5,
“Managing Caches on Client Machines” on page 156.

3.1.1.4 Special Issues
Remember, this is our reference scenario and is not a realistic production
environment because of serious availability concerns.

3.1.1.5 Response Times

All DCE/DFS commands we have tested in this scenario (dce _Togin, rgy edit,
cdscp, rpccp, fts, and others) took less than five seconds. We use the
performance experienced in this scenario as a reference for the scenarios that
follow.

3.1.1.6 Performance Discussion

Performance as far as access to CDS and the registry is concerned should not
be an issue unless these databases are really big or ev1 is heavily used for
other purposes as well. If you start to get slow responses from CDS or the
registry you might consider:

Moving other services to a different machine.

Replicating CDS and security servers, which means load balancing and
improving availability at the same time.

Separating CDS and security servers as a last resort, if their databases are

really big.

3.1.1.7 Availability Discussion

Availability is not discussed in this scenario. If the one server machine fails, the
cell is dead. If such a cell is installed, be sure to back up all DCE databases to

be able to recreate the server machine. See 4.4, “Backup/Restore and Other
Housekeeping Tasks” on page 142 for a description of backup/restore issues.

Chapter 3. Implementing DCE Cells

47

3.1.2 Scenario 2:

48

Master Servers on One Machine and Replicas on Another

, V5

) | DCE Clients

v
1
=

TE

I | DCE Clients
I—I DCE DTS Local
DCE Clients
DCE DTS Local
D ev4
evi
DCE Security Server DCE Security Replica

DCE CDS Replica
DCE DFS Replica + FLDB
DCE DTS Local

DCE CDS Server
DCE DFS Server + FLDB
DCE DTS Local

Figure 18. Scenario 2: One Master Server - One Replica Server

3.1.2.1 Preparation Steps

Before you configure any of the DCE machines you should have:

Created the necessary file systems
Checked network name resolution
Checked network routing

Checked the network interfaces
Synchronized the system clocks
Installed DCE (last of these steps)

For details see 4.1.1, “Preparing for DCE Configuration” on page 84.

3.1.2.2 DCE Configuration Steps
Following are all the configuration steps for this scenario.

Configuring machine evl

1. Configure the core components:
#mkdce -n itsc.austin.ibm.com sec_srv cds_srv dts_local
Test a few commands to see if DCE is working correctly:

#dce_login cell_admin cell_password
#rgy edit -v

#cds1i -world

#rpccp show mapping

#exit

2. Configure the DFS components:

Using and Administering DCE

. Configure the System Control Machine (SCM), DFS Fileset Database
(FLDB), DFS server, DFS client all in one step. The -e flag loads the DFS
kernel extension for now and for subsequent restarts:

#mkdfs -e dfs_scm dfs_f1db dfs_srv dfs_cl
. Create an aggregate for the root.dfs fileset:

#mklv -t 1fs -y Tfsroot rootvg 1
#newaggr -aggreg /dev/1fsroot -b1 8192 -fr 1024 -overwrite

. Export the root.dfs fileset:

#mkdfs1fs -r -d /dev/1fsroot -n 1fsroot
. Login as cell_admin:

#dce_login cell_admin cell_password

. Try to access the DFS filespace:

#cd /:

For the first access, you normally have to wait a minute. If you are not
successful, try again after one minute. The DFS server always goes into
TSR mode (Token Status Recovery) even though there has not been any
data access by any client.

. Replicate the root.dfs fileset:

Before we can define a replicated fileset, replication should first be done
on the primary file server machine. We use the release replication, just
to show how to replicate a fileset. If you want more information about
replicating filesets, see sections 5.2, “DFS Replication” on page 224 and
4.2.3, “Replicating DFS Server” on page 107.

1) Configure the fileset replication server:
#mkdfs dfs_repsrv
2) Create read-write mount point for root.dfs:
#fts crmount /:/.rw root.dfs -rw
3) Define the replication type for root.dfs:
#fts setrepinfo -fileset root.dfs -rel
4) Define the same machine as a replication site:
#fts addsite -fileset root.dfs -server /.:/hosts/evl -aggr 1fsroot

5) Create the read-only fileset and force replication from the read-write
source:

#fts release -fileset root.dfs

6) Leave the DFS root directory, otherwise you are still connected to the
read-write fileset of the /: directory:

#cd

7) Force the local cache manager to refresh its knowledge about the
fileset configuration:

#cm checkfilesets

8) Check whether you can create a file in /: now:

#cd /:
#touch testfile
touch: 0652-046 Cannot create testfile.

Chapter 3. Implementing DCE Cells 49

9) You can create the testfile only via the read-write mount point:

#ed /:/.rw
#touch testfile
#1s

g. Create another fileset:
Create a logical volume /dev/usrbin with five blocks of 4MB:
#mklv -t 1fs -y usrbin rootvg 5
Create an aggregate on the /dev/usrbin:
#newaggr -aggreg /dev/usrbin -b1 8192 -fr 1024 -overwrite
Export the aggregate:
#mkdfs1fs -d /dev/usrbin -n usrbin
Create a fileset without a mount point:
#mkdfs1fs -f usrbin.ft -n usrbin
See if the fileset is correctly exported:
#fts 1sfldb
h. Replicate this fileset before you create the mount point:
1) Define the replication type for usrbin.ft:
#fts setrepinfo -fileset usrbin.ft -rel
2) Define the same machine as a replication site:
#fts addsite -fileset usrbin.ft -server /.:/hosts/evl -aggr usrbin

3) Create the read-only fileset and force replication from the read-write
source:

#fts release -fileset usrbin.ft
i. Mount the fileset and test access to it:

1) Create the regular mount point /:/usrbin, which becomes the
read-only access path. Since /: is read-only, you must do it as
follows:

#fts crmount /:/.rw/usrbin usrbin.ft

2) Update the read-only copy of root.dfs to make the directory /:/usrbin
available:

#fts rel root.dfs
3) Force the local cache manager to read the new fileset information:
#cm checkfilesets

You will not be able to create files in /:/usrbin, because this path
accesses the read-only fileset. You can access the read-write fileset via
/:l.rw/usrbin or you can create a read-write mount point /:/.usrbin, if you
do not plan to keep /:/.rw available for daily use.

To create the read-write mount point issue:

fts crmount /:/.rw/.usrbin usrbin.ft -rw

Configuring machines ev2, ev3
1. Configure the core components for ev2:

#mkdce -n itsc.austin.ibm.com -s evl sec cl cds _cl dts_local

50 Using and Administering DCE

Test a few commands to see if DCE is working correctly:

#dce_login cell_admin cell_password
#rgy edit -v

#cds1i -world

#rpccp show mapping

2. Configure the DFS components for ev2:
#mkdfs dfs_cl

Test a few commands to see if DFS is working correctly:

#fts 1sfldb
#cd /:
#1s -al

3. If this DFS client had access to /: before the fileset usrbin.ft was created, you
would have to force the local cache manager to read the new fileset
information:

#cm checkfilesets

4. Repeat above steps for ev3:

Configuring machine ev4

1. Configure the core components:

#mkdce -n itsc.austin.ibm.com -s evl sec_cl cds_cl dts_local

2. Configure the CDS replication server:

#mkdce cds_second

See 4.1.6.1, “Replicating a CDS Server” on page 98 for more details about
CDS replication.

3. Configure the security replication server:

#mkdce -R -r ev4 sec_srv

4. Configure the DFS components:

a.

Force a bind to the master security server:
export BIND PE_SITE=1

See the remarks about the timing problem in 4.2, “Configuring DFS” on
page 101 for reasons why this step is necessary.

. Configure the DFS client:

#mkdfs dfs_cl

. Configure the the Fileset Database (FLDB):

#mkdfs -s /.:/hosts/evl dfs_fldb

. Configure the DFS File server with the option to load the kernel

extension:
#mkdfs -s /.:/hosts/evl -e dfs_srv

. Configure the DFS replication server machine:

#mkdfs -s /.:/hosts/evl dfs_repsrv
Release the forced connection to the master security server:
unset BIND_PE_SITE

. Create logical volumes as large as on evli:

Chapter 3. Implementing DCE Cells

51

52

#mklv -t 1fs -y 1fsroot rootvg 1
#mklv -t 1fs -y usrbin rootvg 5

h. Create the aggregates:

#newaggr -aggreg /dev/1fsroot -b1l 8192 -fr 1024 -overwrite
#newaggr -aggreg /dev/usrbin -b1 8192 -fr 1024 -overwrite

i. Export the aggregates:

#mkdfs1fs -d /dev/1fsroot -n 1fsroot
#mkdfs1fs -d /dev/usrbin -n usrbin

j. Define the new replication site:

#fts addsite -fileset root.dfs -server /.:/hosts/ev4 -aggr 1fsroot
#fts addsite -fileset usrbin.ft -server /.:/hosts/ev4 -aggr usrbin

k. Create the read-only filesets and force replication from the read-write
sources:

#fts release -fileset root.dfs
#fts release -fileset usrbin.ft

I. If this DFS client had access to /: before the fileset usrbin.ft was created,
you would have to Force the local cache manager to read the new fileset
information:

#cm checkfilesets

3.1.2.3 Scenario Experiences

Note that being successful configuring a secondary CDS server does not mean
that any directories and names are replicated. You have to select which
directory to replicate on machine ev4. Suppose we have a directory called
/.:/Ibranchl and we want to replicate it on machine ev4. Here is how you do it:

#dce_login cell_admin cell password

#cds1i -rd | grep branchl | xargs -i -t cdscp create replica {} \
clearinghouse /.:/ev4_ch

#cds1i -rd | grep branchl | xargs -i -t cdscp set dir {} to new \
epoch master /.:/evl ch readonly /.:/ev4 ch

The commands recursively copy all directories underneath the directory
/.:/branch, too.

There is a shell script copy _CH provided on the diskette with this publication that
copies all directories to a new clearinghouse.

3.1.2.4 Special Issues

The DFS recommendation is to have at least three FLDBs to ease their voting
process for a master FLDB. If we had more file server nodes, we would have to
install one more FLDB server as well.

There is not a right or a wrong sequence of steps to set up fileset replication.
We replicate a fileset immediately after having created it and before we create
the mount point. By doing so we prevent any DFS clients from accessing the
read-write fileset via the path name consisting of regular mount points. But if
you do not know yet whether you will ever replicate a fileset later on, it is
perfectly right to first create all filesets and mount points, populate the file space,
and then possibly replicate some of the filesets. See 4.2.3, “Replicating DFS
Server” on page 107 and 5.2, “DFS Replication” on page 224 for more
information on how to replicate filesets.

Using and Administering DCE

3.1.2.5 Response Times

All DCE/DFS commands we have tested in this scenario (dce _Togin, rgy edit,
cdscp, rpccp and others) took less than five seconds, when all servers are
available. It seems as good as scenario 1.

3.1.2.6 Performance Discussion

Having replicated servers means load balancing for registry, CDS, FLDB, and
DFS fileset access, provided that the right CDS directories are replicated and the
DFS data access is read-mostly to replicated filesets.

Depending on the problems that are experienced the following improvements
are possible:

Removing other services/applications from the DCE server machines
Creating more replicated servers of all types to spread load

If frequent write access to CDS and/or DFS files occur, consider distributing
CDS master replicas and/or DFS read-write filesets to different nodes, close
to where they are accessed

3.1.2.7 Availability Discussion

In this scenario the entire registry database is replicated which makes sure that
tickets can be issued as long as one of the security servers is reachable.
Changes to the registry such as adding a new principal might be temporarily
impossible, if evl is unavailable.

The FLDB is replicated which improves availability in the case of a network
partition or if one of the servers becomes unavailable.

In order to get highly available read access to the fileset usrbin.ft.readonly, all
filesets containing the mount point and its parent directories all the way up to
the root directory (/:) should be replicated, too. This means root.dfs must be
replicated on ev4 to make sure /:/usrbin can be accessed, if evl breaks.

Note, for CDS, you must explicitly replicate each directory you want to make
highly available. The same is true for DFS filesets. For both, CDS and DFS files,
high availability is only assured for read access. Write access always goes to
the master copy, which might become temporarily unavailable.

HACMP should be considered for all cases in which even temporary
unavailability is unacceptable.

Chapter 3. Implementing DCE Cells 53

3.1.3 Scenario 3: Master Servers and Replicas on Different Machines

54

SCENARIO 3

| DCE Clients

T ——¢ o apea
|
=R

DCE DTS Local
DCE CDS Replica
DCE DFS Replica +FLDB

DCE DTS Local
DCE CDS Server ev.
DCE DFS Server + FLDB

DCE Security Server
DCE DTS Local

DCE Security Replica
DCE DTS Local

Figure 19. Scenario 3: DCE Servers on Different Machines

3.1.3.1 Preparation Steps

Before you configure any of the DCE machines you should have:

Created the necessary file systems
Checked network name resolution
Checked network routing

Checked the network interfaces
Synchronized the system clocks
Installed DCE (last of these steps)

For details see 4.1.1, “Preparing for DCE Configuration” on page 84.

3.1.3.2 DCE Configuration Steps
Following are all the configuration steps for this scenario.
Configuring machine evl

1. Configure the core components:

a. Configure the Security server machine:
#mkdce -n itsc.austin.ibm.com sec_srv

Note that you have to configure the core services on machine ev2 now
before you continue with the next steps.

b. Configure the DTS server and other DCE core clients:
#mkdce cds_c1 dts_local

Test a few commands to see if DCE is working correctly:

Using and Administering DCE

#dce_login cell_admin cell_password
#rgy edit -v

#cds1i -world

#rpccp show mapping

2. Configure the DFS Client machine:
#mkdfs dfs_cl

Configuring machine ev2

1. Configure the core components:

#mkdce -n itsc.austin.ibm.com -s evl cds_srv sec_cl dts_local

2. Configure the DFS components:

a.

Configure the System Control Machine (SCM):
#mkdfs dfs_scm

. Configure the DFS Fileset Database:

#mkdfs dfs_fldb

. Configure the DFS File Server with the option to load the kernel

extension:
#mkdfs -e dfs_srv

. Configure the DFS client:

#mkdfs dfs_cl

. Create an aggregate for the root.dfs fileset:

#mklv -t 1fs -y 1fsroot rootvg 1
#newaggr -aggreg /dev/1fsroot -bl 8192 -fr 1024 -overwrite

Export the root.dfs fileset:
#mkdfs1fs -r -d /dev/1fsroot -n 1fsroot

. Login as cell_admin:

#dce_login cell_admin cell_password

. Try to access the DFS filespace:

#cd /:

For the first access, you normally have to wait a minute. If you are not
successful, try again after one minute. The DFS server always goes into
TSR mode (Token Status Recovery) even though there has not been any
data access by any client.

. Replicate the root.dfs fileset:

Before we can define a replicated fileset, replication should first be done
on the primary file server machine. We use the release replication, just
to show how to replicate a fileset. If you want more information about
replicating filesets, see sections 5.2, “DFS Replication” on page 224 and
4.2.3, “Replicating DFS Server” on page 107.

1) Configure the fileset replication server:
#mkdfs dfs_repsrv

2) Create read-write mount point for root.dfs:

#fts crmount /:/.rw root.dfs -rw

3) Define the replication type for root.dfs:

Chapter 3. Implementing DCE Cells 55

#fts setrepinfo -fileset root.dfs -rel
4) Define the same machine as a replication site:
#fts addsite -fileset root.dfs -server /.:/hosts/ev2 -aggr 1fsroot

5) Create the read-only fileset and force replication from the read-write
source:

#fts release -fileset root.dfs

6) Leave the DFS root directory, otherwise you are still connected to the
read-write fileset of the /: directory:

#cd

7) Force the local cache manager to refresh its knowledge about the
fileset configuration:

#cm checkfilesets
8) Check whether you can create a file in /: now:

#cd /:
#touch testfile
touch: 0652-046 Cannot create testfile.

9) You can create the testfile only via the read-write mount point:

#ed /:/.rw
#touch testfile
#1s

j. Create another fileset:
Create a logical volume /dev/usrbin with five blocks of 4MB:
#mklv -t 1fs -y usrbin rootvg 5
Create an aggregate on the /dev/usrbin:
#newaggr -aggreg /dev/usrbin -b1 8192 -fr 1024 -overwrite
Export the aggregate:
#mkdfs1fs -d /dev/usrbin -n usrbin
Create a fileset without a mount point:
#mkdfs1fs -f usrbin.ft -n usrbin
See if the fileset is correctly exported:
#fts 1sfldb
k. Replicate this fileset before you create the mount point:
1) Define the replication type for usrbin.ft:
#fts setrepinfo -fileset usrbin.ft -rel
2) Define the same machine as a replication site:
#fts addsite -fileset usrbin.ft -server /.:/hosts/ev2 -aggr usrbin

3) Create the read-only fileset and force replication from the read-write
source:

#fts release -fileset usrbin.ft

I. Mount the fileset and test access to it:

56 Using and Administering DCE

1)

2)

3)

Create the regular mount point /:/usrbin, which becomes the
read-only access path. Since /: is read-only, you must do it as
follows:

#fts crmount /:/.rw/usrbin usrbin.ft

Update the read-only copy of root.dfs to make the directory /:/usrbin
available:

#fts rel root.dfs
Force the local cache manager to read the new fileset information:

#cm checkfilesets

You will not be able to create files in /:/usrbin, because this path
accesses the read-only fileset. You can access the read-write fileset via
/:l.rw/usrbin or you can create a read-write mount point /:/.usrbin, if you
do not plan to keep /:/.rw available for daily use.

To create the read-write mount point issue:

fts crmount /:/.rw/.usrbin usrbin.ft -rw

Configuring machine ev3

1. Configure the DTS server and DCE core clients:

#mkdce -n itsc.austin.ibm.com -s evl sec cl cds _cl dts_local

2. Configure the CDS replication server:

#mkdce cds_second

See 4.1.6.1, “Replicating a CDS Server” on page 98 for more details about
CDS replication.

3. Configure the DFS components:

a.

Configure the DFS client:
#mkdfs dfs_cl

. Configure the DFS Fileset Database (FLDB):

#mkdfs -s /.:/hosts/ev2 dfs_fldb

. Configure the DFS File Server Machine with the option to start the kernel

extension:
#mkdfs -s /.:/hosts/ev2 -e dfs_srv

. Configure the DFS replication Server machine:

#mkdfs -s /.:/hosts/ev2 dfs_repsrv

Create logical volumes as large as on ev2:

#mklv -t 1fs -y 1fsroot rootvg 1
#mklv -t 1fs -y usrbin rootvg 5

Create the aggregates:

#newaggr -aggreg /dev/1fsroot -b1 8192 -fr 1024 -overwrite
#newaggr -aggreg /dev/usrbin -bl 8192 -fr 1024 -overwrite

. Export the aggregates:

#mkdfs1fs -d /dev/1fsroot -n 1fsroot
#mkdfs1fs -d /dev/usrbin -n usrbin

Define the new replication site:

Chapter 3. Implementing DCE Cells 57

#fts addsite -fileset root.dfs -server /.:/hosts/ev3 -aggr 1fsroot
#fts addsite -fileset usrbin.ft -server /.:/hosts/ev3 -aggr usrbin

i. Create the read-only filesets and force replication from the read-write
sources:

#fts release -fileset root.dfs
#fts release -fileset usrbin.ft

j. If this DFS client had access to /: before the fileset usrbin.ft was created,
you would have to Force the local cache manager to read the new fileset
information:

#cm checkfilesets

Configuring machine ev4
1. Configure the DTS Server and DCE core clients:
#mkdce -n itsc.austin.ibm.com -s evl sec c1 cds _cl dts local
2. Configure the Security replication server:
#mkdce -R -r ev4 sec_srv
3. Configure the DFS Client machine:
#mkdfs dfs_cl

4. If this DFS client had access to /: before the fileset usrbin.ft was created, you
would have to force the local cache manager to read the new fileset
information:

#cm checkfilesets

3.1.3.3 Scenario Experiences
Same discussion as in scenario 2, see 3.1.2.3, “Scenario Experiences” on
page 52

3.1.3.4 Special issues
There are no special issues in this scenario.

3.1.3.5 Performance Discussion
Same discussion as scenario 2, see 3.1.2.6, “Performance Discussion” on
page 53

3.1.3.6 Availability Discussion
Same discussion as on scenario 2, see 3.1.2.7, “Availability Discussion” on
page 53

3.2 LAN/WAN Cells

58

This section discusses cell topologies which involve remote sites connected to a
central site via wide area networks (WANSs) that use relatively slow
communication links. This is probably the most common real world picture of
companies today, where a (usually) big number of subsidiaries or branch offices
need access to a (usually) small number of central sites. These remote sites are
very different in size. They may range from a single remote workstation to a site
with hundreds of workstations.

In our limited test environment we set up a couple of scenarios with a central
site, which is marked by the token-ring LAN, and one remote site. We looked at

Using and Administering DCE

two different types of remote sites, a small one which does not run any servers
or services and a large one which consists of a couple of servers and many
client workstations. The following is a list of two site scenarios with different link
types, which we look at in this section:

A small branch connected via X.25 (scenario 4a)
A small branch connected via SLIP (scenario 4b)
A large branch connected via X.25 (scenario 5a)
A large branch connected via SLIP (scenario 5b)
A branch with redundant communication links (scenario 6)

Today companies are establishing their vital communication links and networks
with routers and bridges, which allow for several protocols to be transmitted so
the same infrastructure can be used in a heterogeneous environment. They may
even implement alternate communication links, such that we need not worry
about availability of the network. The more sophisticated the network the less
we need to be concerned about the location of the DCE servers and replicas,
because the entire network resembles one big LAN.

However, there are environments where IP routing is done by regular
workstations or servers. This is what we implemented in our scenarios. The
most important result we want to get across is the DCE servers should not
export slow WAN interfaces into CDS. Always exclude, for instance, X.25 or SLIP
interfaces by setting the environment variable RPC_UNSUPPORTED_NETIFS. See
4.1.1.3, “Checking Network Routing” on page 86 for details.

For a summary of our findings and planning hints see Chapter 2, “Planning DCE
Cells” on page 27.

We provide all commands to create each specific scenario so there is a
complete guideline which can be followed. For more explanation, sample SMIT
screens, and command output see 4.1, “Configuring a Cell” on page 84.

In these scenarios be careful with the routing. For the sake of simplicity we
used the /etc/hosts file and static routes. Please be aware that you most likely
will find domain name servers and routing daemons in a customer environment.
It is beyond the scope of this document to explain their setup.

Chapter 3. Implementing DCE Cells 59

3.2.1 Scenario 4a: A Small Branch Connected via X.25

evd

SCENARIO 4a

DCE Clients

DCE Security Replica
DCE CDS Replica

DCE DTS Glohal
G 1A NATORSC

DCE DFS Replica + FLDB
DCE Clients
IE DCE DTS Local

DGCE Security Server
DCE CDS Server

DCE DTS Gilobal DCE DTS Local I

DCE DFS Server + FLDB
DCE Clients

Figure 20. Scenario 4a: A Small Branch Connected via 19,200bps X.25

3.2.1.1 Preparation Steps

Before you configure any of the DCE machines you should have:

Created the necessary file systems
Checked network name resolution
Checked network routing - see below
Checked the network interfaces
Synchronized the system clocks
Installed DCE (last of these steps)

For details see 4.1.1, “Preparing for DCE Configuration” on page 84. To
communicate to each other we have to set the routes on each machine:

On machine evl: List the network interfaces:

#netstat -i

name Mtu Network Address Ipkts Ierrs Opkts Oerrs Coll
100 1536 <Link> 14992 0 14992 0 0
100 1536 127 Toopback 14992 0 14992 0 0
tr0 1492 <Link> 17654 0 14115 0 0
tr0 1492 9.3.1 evl 17654 0 14115 0 0
xt0 576 <Link> 3 0 30 0
xt0 576 192.1.20 evl 3 0 30 0

Check name resolution:

60 Using and Administering DCE

#host evl

evl is 9.3.1.68, Aliases: evltr, evlx25
#host evdet

evd is 193.1.10.4, Aliases: evdet

#host evix25

evd is 192.1.20.2, Aliases: evé4x2bh

In order for evl to get to the Ethernet network we have to specify ev4's X.25
interface as the gateway:

#route add -net 193.1.10 ev4x25 1

Exclude the X.25 interface now and forever:

export RPC_UNSUPPORTED_NETIFS=xt0
echo "export RPC_UNSUPPORTED _NETIFS=xt0" >> /etc/environment

On machine ev2: List the network interfaces:

#netstat -i

name Mtu Network Address Ipkts Ierrs Opkts Oerrs Coll
1o0 1536 <Link> 14992 0 14992 0 0
1o0 1536 127 Toopback 14992 0 14992 0 0
tr0 1492 <Link> 17654 0 14115 0 0
tr0 1492 9.3.1 ev2 17654 0 14115 0 0
Set the appropriate route to always go via evi:

#route add default evl 1

On machine ev3: List the network interfaces:

#netstat -i

name Mtu Network Address Ipkts Ierrs Opkts Oerrs Coll
100 1536 <Link> 14992 0 14992 0 0
100 1536 127 Toopback 14992 0 14992 0 0
en0 1492 <Link> 17654 0 14115 0 0
en0 1492 193.1.10 ev3 17654 0 14115 0 0

Check name resolution and set the appropriate route:

#host ev4d

evd is 193.1.10.4

#host ev3

ev3 is 193.1.10.3, Aliases: ev3et
#host evl

evl is 9.3.1.68

#route add default evd 1

On machine ev4.: List the network interfaces:

#netstat -i

name Mtu Network Address Ipkts Ierrs Opkts Oerrs Coll
100 1536 <Link> 14992 0 14992 0 0
100 1536 127 Toopback 14992 0 14992 0 0
en0 1492 <Link> 17654 0 14115 0 0
en0 1492 193.1.10 evé 17654 0 14115 0 0
xt0 576 <Link> 3 0 30 0
xt0 576 192.1.20 evd 3 0 30 0

Check name resolution and set the appropriate route:

Chapter 3. Implementing DCE Cells

61

#host evl

evl is 9.3.1.68, Aliases: evlx2bh
#host evlx2bs

evl is 192.1.20.3, Aliases: evlx25

#route add -net 9.3.1 evlx25 1

3.2.1.2 DCE Configuration Steps
Following are all the configuration steps for this scenario.

Configuring machine evl
1. Configure the core components:
#mkdce -n itsc.austin.ibm.com sec_srv cds_srv dts global
Test a few commands to see if DCE is working correctly:

#dce_login cell_admin cell_password
#rgy edit -v

#cds1i -world

#rpccp show mapping

#exit

2. Configure the DFS components:

a. Configure the System Control Machine (SCM), DFS Fileset Database
(FLDB), DFS server, DFS client all in one step: The -e flag loads the DFS
kernel extension for now and for subsequent restarts:

#mkdfs -e dfs_scm dfs_fldb dfs_srv dfs_cl
b. Create an aggregate for the root.dfs fileset:

#mklv -t 1fs -y 1fsroot rootvg 1
#newaggr -aggreg /dev/1fsroot -b1 8192 -fr 1024 -overwrite

c. Export the root.dfs fileset:

#mkdfs1fs -r -d /dev/1fsroot -n 1fsroot
d. Login as cell_admin:

#dce login cell_admin cell password
e. Try to access the DFS filespace:

#cd /:

For the first access, you normally have to wait a minute. If you are not
successful, try again after one minute. The DFS server always goes into
TSR mode (Token Status Recovery) even though there has not been any
data access by any client.

f. Replicate the root.dfs fileset:

Before we can define a replicated fileset, replication should first be done
on the primary file server machine. We use the release replication, just
to show how to replicate a fileset. If you want more information about
replicating filesets, see sections 5.2, “DFS Replication” on page 224 and
4.2.3, “Replicating DFS Server” on page 107.

1) Configure the fileset replication server:
#mkdfs dfs_repsrv
2) Create read-write mount point for root.dfs:

#fts crmount /:/.rw root.dfs -rw

62 Using and Administering DCE

3) Define the replication type for root.dfs:
#fts setrepinfo -fileset root.dfs -rel
4) Define the same machine as a replication site:
#fts addsite -fileset root.dfs -server /.:/hosts/evl -aggr 1fsroot

5) Create the read-only fileset and force replication from the read-write
source:

#fts release -fileset root.dfs

6) Leave the DFS root directory, otherwise you are still connected to the
read-write fileset of the /: directory:

#cd

7) Force the local cache manager to refresh its knowledge about the
fileset configuration:

#cm checkfilesets
8) Check whether you can create a file in /: now:

#cd /:
#touch testfile
touch: 0652-046 Cannot create testfile.

9) You can create the testfile only via the read-write mount point:

#cd /:/.rw
#touch testfile
#1s

g. Create another fileset:

h.

Create a logical volume /dev/usrbin with five blocks of 4MB:
#mklv -t 1fs -y usrbin rootvg 5
Create an aggregate on the /dev/usrbin:
#newaggr -aggreg /dev/usrbin -bl 8192 -fr 1024 -overwrite
Export the aggregate:
#mkdfs1fs -d /dev/usrbin -n usrbin
Create a fileset without a mount point:
#mkdfs1fs -f usrbin.ft -n usrbin
See if the fileset is correctly exported:
#fts 1sfldb
Replicate this fileset before you create the mount point:
1) Define the replication type for usrbin.ft:
#fts setrepinfo -fileset usrbin.ft -rel
2) Define the same machine as a replication site:
#fts addsite -fileset usrbin.ft -server /.:/hosts/evl -aggr usrbin

3) Create the read-only fileset and force replication from the read-write
source:

#fts release -fileset usrbin.ft

Mount the fileset and test access to it:

Chapter 3. Implementing DCE Cells 63

1) Create the regular mount point /:/usrbin, which becomes the
read-only access path. Since /: is read-only, you must do it as
follows:

#fts crmount /:/.rw/usrbin usrbin.ft

2) Update the read-only copy of root.dfs to make the directory /:/usrbin
available:

#fts rel root.dfs
3) Force the local cache manager to read the new fileset information:
#cm checkfilesets

You will not be able to create files in /:/usrbin, because this path
accesses the read-only fileset. You can access the read-write fileset via
/:l.rw/usrbin or you can create a read-write mount point /:/.usrbin, if you
do not plan to keep /:/.rw available for daily use.

To create the read-write mount point issue:

fts crmount /:/.rw/.usrbin usrbin.ft -rw

Configuring machine ev2
1. Configure the DTS server and DCE core clients:

#mkdce -n itsc.austin.ibm.com -s evl sec_cl cds_cl dts_global
2. Configure the CDS replication server:

#mkdce cds_second

See 4.1.6.1, “Replicating a CDS Server” on page 98 for more details about
CDS replication.

3. Configure the security replication server:
#mkdce -R -r ev2 sec_srv
4. Configure the DFS components:
a. Force a bhind to the master security server:
export BIND PE SITE=1

See the remarks about the timing problem in 4.2, “Configuring DFS” on
page 101 for reasons why this step is necessary.

b. Configure the DFS client:
#mkdfs dfs_cl

c. Configure the the Fileset Database (FLDB):
#mkdfs -s /.:/hosts/evl dfs_fldb

d. Configure the DFS File server with the option to load the kernel
extension:

#mkdfs -s /.:/hosts/evl -e dfs_srv

e. Configure the DFS replication server machine:
#mkdfs -s /.:/hosts/evl dfs_repsrv

f. Release the forced connection to the master security server:
unset BIND PE SITE

g. Create logical volumes as large as on evlI:

64 Using and Administering DCE

#mklv -t 1fs -y 1fsroot rootvg 1
#mklv -t 1fs -y usrbin rootvg 5

h. Create the aggregates:

#newaggr -aggreg /dev/1fsroot -bl 8192 -fr 1024 -overwrite
#newaggr -aggreg /dev/usrbin -b1 8192 -fr 1024 -overwrite

i. Export the aggregates

#mkdfs1fs -d /dev/1fsroot -n 1fsroot
#mkdfs1fs -d /dev/usrbin -n usrbin

j. Define the new replication site:

#fts addsite -fileset root.dfs -server /.:/hosts/ev2 -aggr 1fsroot
#fts addsite -fileset usrbin.ft -server /.:/hosts/ev2 -aggr usrbin

k. Create the read-only filesets and force replication from the read-write
sources

#fts release -fileset root.dfs
#fts release -fileset usrbin.ft

I. If this DFS client had access to /: before the fileset usrbin.ft was created,
you would have to Force the local cache manager to read the new fileset
information:

#cm checkfilesets

Configuring machines ev3, ev4

1. Configure the core components for ev3:

#mkdce -n itsc.austin.ibm.com -s evl -c evl sec cl cds cl dts_Tocal
Test a few commands to see if DCE is working correctly:

#dce_login cell_admin cell_password
#rgy edit -v
#cds1i -world
#rpccp show mapping

2. Configure the DFS components for ev3:
#mkdfs dfs_cl

Test a few commands to see if DFS is working correctly:

#fts 1sfldb
#cd /:
#1s -al

3. If this DFS client had access to /: before the fileset usrbin.ft was created, you
would have to force the local cache manager to read the new fileset
information:

#cm checkfilesets

4. Repeat above steps for ev4:

3.2.1.3 Scenario Experiences

When we configure the DCE/DFS client machines on the Ethernet side, it takes
more time than when we configure them on the token-ring side where the
servers are located.

Chapter 3. Implementing DCE Cells 65

66

3.2.1.4 Special Issues

The DFS recommendation is to have at least three FLDBs to ease their voting
process for a master FLDB. If we had more file server nodes, we would have to
install one more FLDB server as well.

The DTS recommendation is to have at least three servers on each LAN
segment. We would have to add more local DTS servers, if we had more nodes.
We decided that the central site only is responsible for the correct time. By
defining global servers on the central site only we make sure that:

1. The central site's servers adjust their clocks only among themselves.
2. The remote sites synchronize with one global server of the central site and
with their own local servers:

Note that if a third local DTS server were added to the Ethernet LAN, ev4 would
have to be a courier, to make sure that a global server is contacted. Since there
are only two, the DTS local servers on the Ethernet automatically contacts a
global server to get three clock values.

Since the CDS servers are on another LAN, we must specify the -c flag with the
first mkdce command.

3.2.1.5 Response Times

On the token-ring side, even though we integrate a WAN, performance is still as
good as in scenario 2 and 3. However, on the Ethernet side, response is not as
good as on the token-ring side. The reason is that all DCE client commands
have to go across the slower WAN link, which is an X.25 line with 19,200 bps in
this scenario.

When we have all DCE/DFS clients over a WAN, access to DCE always takes
more time, but all DCE commands work correctly with an acceptable response
time.

3.2.1.6 Performance Discussion

Having replicated servers means load balancing as we discussed in scenario 2
(see 3.1.2.6, “Performance Discussion” on page 53) as long as we do not
replicate servers to the remote sites. The improvements mentioned there are
valid only within the central site. Faster communication links would be the first
step for better performance.

Further improvements in the branches can be achieved by moving or replicating
certain DCE servers and resources to the remote sites. This has to be well
designed, otherwise you will experience a lot of unnecessary traffic to servers in
the remote sites. This would affect performance of the entire cell. In our
scenarios we would consider a site with DCE servers a large branch. See in
3.2.3.6, “Performance Discussion” on page 72 (scenario 5a) and 3.2.4.6,
“Performance discussion” on page 79 (scenario 5b) for a discussion on server
replication over WAN.

3.2.1.7 Availability Discussion
The availability discussion as far as the central site is concerned is the same as
in scenario 2 (see 3.1.2.7, “Availability Discussion” on page 53).

The remote sites are at a certain risk. If the link becomes unavailable or one of
the gateway nodes drop out, DCE is not working for this branch anymore. The
solution for improved availability is either replicating the servers which is very

Using and Administering DCE

delicate (see above performance discussion) or redundant layout of the
underlying TCP/IP with dynamic routing. See also 3.2.5, “Scenario 6: A Branch
Connected with Two Links” on page 81.

Chapter 3. Implementing DCE Cells 67

3.2.2 Scenario 4b: A Small Branch Connected via SLIP

SCENARIO 4b

DCE Security Replica qg_l
DCE CDS Hepllca i‘
DCE DFS Rephoa+ FLDB DGE Clients
1 | et eplicat DGE DTS Local
oA
E DCE Security Server
i DCE GDS Serv
DCE DFS Server + FLDB
DCE DTS Gilobal
DCE DTS Local
DCE Clients

Figure 21. Scenario 4b: A Small Branch Connected via 9600bps SLIP

3.2.2.1 Preparation Steps

Before you configure any of the DCE machines you should have:

Created the necessary file systems
Checked network name resolution
Checked network routing - see below
Checked the network interfaces
Synchronized the system clocks
Installed DCE (last of these steps)

For details see 4.1.1, “Preparing for DCE Configuration” on page 84. To
communicate to each other we have to set the routes on each machine:

On machine evl: List the network interfaces:

#netstat -i

name Mtu Network Address Ipkts Ierrs Opkts Oerrs Coll
100 1536 <Link> 14992 0 14992 0 0
100 1536 127 Toopback 14992 0 14992 0 0
tr0 1492 <Link> 17654 0 14115 0 0
tr0 1492 9.3.1 evl 17654 0 14115 0 0

Set up the appropriate route to reach the Ethernet network via ev2:
#route add -net 193.1.10 ev2 1

On machine ev2: List the network interfaces:

68 Using and Administering DCE

#netstat -i
Name Mtu Network Address Ipkts Ierrs Opkts Oerrs Coll

To0 1536 <Link> 45826 0 45826 0 0
100 1536 127 Toopback 45826 0 45826 0 0
tr0 1492 <Link> 260541 0 213737 0 0
tr0 1492 9.3.1 ev? 260541 0 213737 0 0
s10 1006 <Link> 2430 0 2360 0 0
s10 1006 192.1.21 ev2s] 2430 0 2360 0 0

Set the appropriate route to the Ethernet network via the SLIP interface of ev3:
#route add -net 193.1.10 ev3sl 1

Exclude the SLIP interface now and forever:

export RPC_UNSUPPORTED_NETIFS=s10
echo "export RPC_UNSUPPORTED_NETIFS=s10" >> /etc/environment

On machine ev3: List the network interfaces:

#netstat -i

Name Mtu Network Address Ipkts Ierrs Opkts Oerrs Coll
100 1536 <Link> 45826 0 45826 0 0
100 1536 127 Toopback 45826 0 45826 0 0
en0 1492 <Link> 123451 0 123457 0 0
en0 1492 193.1.10 ev3 123451 0 123457 0 0
s10 1006 <Link> 2360 0 2430 0 0
s10 1006 192.1.21 ev3s] 2360 0 2430 0 0

Check name resolution and set the appropriate route:

#host ev2s]
evZs] is 192.1.21.1
#route add default ev2sl 1

On machine ev4 List the network interfaces:

#netstat -i

name Mtu Network Address Ipkts Ierrs Opkts Oerrs Coll
100 1536 <Link> 14992 0 14992 0 0
100 1536 127 Toopback 14992 0 14992 0 0
en0 1492 <Link> 17654 0 14115 0 0
en0 1492 193.1.10 ev4 17654 0 14115 0 0

Set the appropriate route:

#route add default ev3 1

3.2.2.2 DCE Configuration Steps
Follow scenario 4a by exchanging the roles of evl and ev2:

Configuring machine evl: Follow the steps of “Configuring machine ” on
page 62 for scenario 4a.

Configuring machine ev2: Follow the steps of “Configuring machine ” on
page 64 for scenario 4a

Configuring machines ev3, ev4: Follow the steps of “Configuring machines ” on
page 65 for scenario 4a.

Chapter 3. Implementing DCE Cells 69

70

3.2.2.3 Scenario Experiences

When we configure the DCE/DFS Clients machines on the Ethernet side, it takes
normally more time than when we configure on the token-ring side where the
servers are.

3.2.2.4 Special Issues

The SLIP interface is not recognized by DCE, which means when servers request
to export their interfaces to the local RPC map and to CDS, SLIP is simply
ignored. Thus, SLIP can be used for DCE, but only on the basis of IP routing.
Standalone remote clients connected via SLIP need to define a dummy LAN
network on their built-in Ethernet adapter to be able to configure DCE clients.

We excluded the SLIP interface anyway to make sure that the interface is also
excluded in case the ignoring of SLIP is just a temporary restriction.

3.2.2.5 Response Times

On the token-ring side, even though we integrate a SLIP line, performance is still
as good as in the scenarios 2 and 3. On the Ethernet side, response is not as
good as on the token-ring side and not as good as over X.25, but still acceptable.

3.2.2.6 Performance Discussion
Same discussion as in scenario 4a (see 3.2.1.6, “Performance Discussion” on
page 66).

3.2.2.7 Availability Discussion
Same discussion as in scenario 4a (see 3.2.1.7, “Availability Discussion” on
page 66).

Using and Administering DCE

3.2.3 Scenario 5a: A Large Branch Connected via X.25

SCENARIO 5a

DCE Clients

ev3

o T

DCE Clients
DCE DTS Local

DCE Security Server i i

DCE CDS Stgrver DC%(S:E%E% Egpligg
DCE DFS Server +FLDB DCE DFS Replica + FLDB
DCE DTS Global + Courier DCE DTS Global + Courier

Figure 22. Scenario 5a: A Large Branch Connected via X.25

3.2.3.1 Preparation Steps

Before you configure any of the DCE machines you should have:

Created the necessary file systems
Checked network name resolution
Checked network routing

Checked the network interfaces
Synchronized the system clocks
Installed DCE (last of these steps)

For details see 4.1.1, “Preparing for DCE Configuration” on page 84.

Be careful with the routing. The routes to be set are the same as in scenario 4a.
See 3.2.1.1, “Preparation Steps” on page 60.

Exclude the X.25 interface on evl and ev4 now and forever:

export RPC_UNSUPPORTED NETIFS=xt0
echo "export RPC_UNSUPPORTED NETIFS=xt0" >> /etc/environment

3.2.3.2 Configuration Steps

To configure all machines in this scenario, you can follow exactly the same steps
as in scenario 2, as described in 3.1.2.2, “DCE Configuration Steps” on page 48.
The only exception is you must replace the very first mkdce command for these
systems. The correct commands are shown below:

First mkdce for machine evl

#mkdce -n itsc.austin.ibm.com -t courier sec_srv cds_srv dts_global

Chapter 3. Implementing DCE Cells 71

72

First mkdce for machine ev2

#mkdce -n itsc.austin.ibm.com -s evl sec_cl cds_cl dts_global

First mkdce for machine ev3

#mkdce -n itsc.austin.ibm.com -s evl -c evl sec_cl cds_cl dts_local

First mkdce for machine ev4

#mkdce -n itsc.austin.ibm.com -s evl -c evl -t courier sec_cl cds_cl dts_global

3.2.3.3 Scenario Experiences

We can configure all services on machine ev4 as planned, but it all takes more
time to configure. We tested with and without an FLDB server on ev4. When
FLDB servers were on both sides of the X.25 link, response times in the whole
cell became really slow. The link was saturated. With xmonitor we observed
heavy X.25 traffic even while there was no user activity. Response times for all
DCE operations went up and even regular TCP/IP commands over this link
became very slow. As soon as the FLDB server was removed from ev4,
operation went back to normal and response times were good.

3.2.3.4 Special Issues

Since we assume that the branch is a large one with a sufficient number of local
DTS servers, we need a courier type server to make sure this site’'s clocks are
synchronized with the central site. The courier server always includes the time
of one global DTS server in the calculation for adjustment of his own clock.

Since the central site also has a courier DTS server, it takes into consideration
the time values of global DTS servers of remote sites. If you wanted the central
site to synchronize the clocks internally and remote sites to adjust to the central
site, you would define the DTS server on evl as noncourier.

3.2.3.5 Response Times

There is no difference from scenario 4a (3.2.1.5, “Response Times” on page 66),
as far as DCE core service access times is concerned, when we do not have an
FLDB server on ev4. Configuring FLDB servers on both sides of the X.25 link
generates considerable extra traffic on this (slow) line and commands
sometimes take a long time to complete.

3.2.3.6 Performance Discussion

Replicating servers usually means load balancing. Since the servers are all
randomly selected, statistically half of the read-only access calls go to servers
on evl and the other half to ev4. That is the case for:

Getting a ticket from the security server
Finding a service from CDS

Finding the location of a fileset from the FLDB
Read access to the replicated fileset usrbin.ft

This can also be the case with DCE based products or customer developed
applications which support replicated services, if they rely on RPC group entries
in CDS and/or use random selection of binding handles. However, an
application developer has all the freedom to implement some sophisticated
features for server selection. One can for instance analyze the binding handles
received from CDS or read an environment variable with a preferred server
address and so on. There are many possibilities. In the core components or DFS

Using and Administering DCE

there are some built-in optimization features and/or configuration options which
we discuss in following sections.

The nice thing about load balancing through random server selection can turn
into a major performance penalty in the whole cell when basically half of all
these calls have to go across a slow WAN link. Is there anything that can be
done to override random selection? However, before we implement any of the
optimizations outlined below, which certainly do not make administration of a
cell any easier, we must anticipate what the performance gain might be. We
should not try to improve something which is happening infrequently at the cost
of complicated configuration and administration efforts. We must be aware of
the fact that all DCE and DFS components are extensively caching. If clients are
statically acting on the same resources all day long, caching is very effective
and the cell layout can be very simple.

Security:

The binding handles of all security servers are defined in the file
/opt/dcelocal/etc/security/pe_site. This file builds a fallback address repository
and is consulted, when the binding handle for the security daemon is not in the
client’'s CDS cache and CDS is not reachable. The security API tries all binding
handles in that file from top to bottom.

We can force the pe_site file to be used right away by exporting the environment
variable BIND_PE_SITE. The top entries are built from the security server site
specified in the mkdce command, which should be the master. All updates of the
file for additional security server entries have to be manually initiated by calling
chpesite. The steps for ev3 to always access the security server on ev4 first
would be:

1. Update the pe_site file to contain all existing security servers:
chpesite

This command overwrites the pe_site file with binding information about all
existing security servers. The master security server is put on top of the list.
In order for this command to succeed, CDS must be running normally.
Otherwise you must add the entries manually with an editor.

2. Edit the pe_site file so that the binding handles for ev4 become the top
entries

3. Set and export the environment variable:
export BIND PE SITE=1

However, this option has to be used with caution, because it would introduce
static definitions and manual interaction on each node. It does make sense in
large LAN/WAN cells if there is a lot of security server access or many slow
links. The security server is mainly accessed when a ticket needs to be issued.
Once a ticket is issued, it remains valid for a configurable amount of time in
which no further security server access is needed. So, overproportional load
would be when ticket lifetimes are too short, as well as when many users log in
at the same time or do frequent logins and logoffs.

CDS:
Access is to the clearinghouse in the same LAN, if the requested directory has a

replica there. If the directory is not there, another CDS server is randomly

Chapter 3. Implementing DCE Cells 73

74

selected and there is no way to bias the CDS clerk towards a specific CDS
server. The only configuration option we have for such cases, is to put specific
directories only on specific clearinghouses, so that accesses over slow WAN
links are minimized. In other words, we need to make sure that CDS is correctly
designed so that all the directories with frequent access from the remote site
have a replica there. See 2.5, “Planning the CDS Namespace” on page 34 for a
CDS design discussion.

FLDB and DFS file server:

Access of the FLDB cannot be predetermined. On the DFS client, preferences
can be set for the cache manager to access certain file servers with higher
priority. The cm setpreferences command does this.

As with CDS we have to be careful while designing the layout of the servers.
The need to contact the FLDB should be minimized, which can be achieved with
a flat hierarchy of the file tree as far as mount points are concerned. What this
means is, filesets should not be mounted too many levels underneath each
other, because during path name resolution the FLDB has to be contacted at
each mount point. The FLDB should never be replicated to locations that are
connected over a slow WAN link with the rest of the cell.

The filesets should be defined as location oriented, so they can be local to the
DFS clients as much as possible. If there is a lot of read-only access, replicas
should be made for load balancing. If the filesets are defined as location
oriented, only few replicas have to be defined for each read-only fileset. This
ensures that updates of certain filesets do not have to go to all locations, which
would cause performance problems.

3.2.3.7 Availability Discussion

From an availability point of view all resources should be replicated in all
locations where at least read access is needed all the time and where there is a
possibility that the communication link to the rest of the cell might become
unavailable.

These requirements might introduce a conflict of interest with the configuration
requirements for good performance as mentioned above. Putting replicated
servers on branches connected with slow WAN links certainly enhances
availability but careful DCE cell design is required to also achieve load balancing
and avoid too much traffic on the slow links (see performance discussion above).
One might be able to do that for a couple of branches, but for a cell with
hundreds of branches we would probably need more than three times as many
DCE core servers, which is difficult to manage and costs a lot of money.

Instead of putting a sophisticated cell configuration in place, which automatically
also complicates cell administration, it might be easier to just make the link to
the central site more highly available. This can be achieved with a
multi-protocol router network or by simply building a backup link which can be
activated in case of a failure of the primary link. 3.2.5, “Scenario 6: A Branch
Connected with Two Links” on page 81 discusses this topic.

Using and Administering DCE

3.2.4 Scenario 5b: A Large Branch Connected via SLIP

SCENARIO 5b

SLIP

w\ ev3
DCE Security Server =g_&

~ o

DCE CDS Server
DCE DFS Server + FLDB T
DCE DTS Gilobal + Courier DCE Securllg Replica
] DCE CDS Replica
— DCE DTS Global + Courier
== EE evi DCE DFS Replica + FLDB
E ev4 ‘
DCE Clients
DCE DTS Global
DGE DTS Local
DCE Clients

Figure 23. Scenario 5b: A Large Branch Connected via SLIP

3.2.4.1 Preparation Steps

Before you configure any of the DCE machines you should have:

Created the necessary file systems
Checked network name resolution
Checked network routing - see below
Checked the network interfaces
Synchronized the system clocks
Installed DCE (last of these steps)

For details see 4.1.1, “Preparing for DCE Configuration” on page 84.

Be careful with routing. The routes to be set are the same as in the scenario 4b.
See 3.2.2.1, “Preparation Steps” on page 68.

Exclude the SLIP interface on ev2 and ev3 now and forever:

export RPC_UNSUPPORTED NETIFS=s10
echo "export RPC_UNSUPPORTED NETIFS=s10" >> /etc/environment

3.2.4.2 DCE Configuration Steps
Following are all the configuration steps for this scenario.
Configuring machine ev2

1. Configure the core components:
#mkdce -n itsc.austin.ibm.com -t courier sec_srv cds_srv dts_global

Test a few commands to see if DCE is working correctly:

Chapter 3. Implementing DCE Cells 75

76

#dce_login cell_admin cell_password
#rgy edit -v

#cds1i -world

#rpccp show mapping

#exit

2. Configure the DFS components:

a.

Using and Administering DCE

Configure the System Control Machine (SCM), DFS Fileset Database
(FLDB), DFS server, DFS client all in one step: The -e flag loads the DFS
kernel extension for now and for subsequent restarts:

#mkdfs -e dfs_scm dfs_fldb dfs_srv dfs_cl

. Create an aggregate for the root.dfs fileset:

#mklv -t 1fs -y 1fsroot rootvg 1
#newaggr -aggreg /dev/1fsroot -bl 8192 -fr 1024 -overwrite

. Export the root.dfs fileset:

#mkdfs1fs -r -d /dev/1fsroot -n 1fsroot

. Login as cell_admin:

#dce_login cell_admin cell_password
Try to access the DFS filespace:
#cd /:

For the first access, you normally have to wait a minute. If you are not
successful, try again after one minute. The DFS server always goes into
TSR mode (Token Status Recovery) even though there has not been any
data access by any client.

Replicate the root.dfs fileset:

Before we can define a replicated fileset, replication should first be done
on the primary file server machine. We use the release replication, just
to show how to replicate a fileset. If you want more information about
replicating filesets, see sections 5.2, “DFS Replication” on page 224 and
4.2.3, “Replicating DFS Server” on page 107.

1) Configure the fileset replication server:
#mkdfs dfs_repsrv
2) Create read-write mount point for root.dfs:
#fts crmount /:/.rw root.dfs -rw
3) Define the replication type for root.dfs:
#fts setrepinfo -fileset root.dfs -rel
4) Define the same machine as a replication site:
#fts addsite -fileset root.dfs -server /.:/hosts/ev2 -aggr 1fsroot

5) Create the read-only fileset and force replication from the read-write
source:

#fts release -fileset root.dfs

6) Leave the DFS root directory, otherwise you are still connected to the
read-write fileset of the /: directory:

#cd

7) Force the local cache manager to refresh its knowledge about the

8)

9)

fileset configuration:
#cm checkfilesets

Check whether you can create a file in /: now:

#cd /:
#touch testfile
touch: 0652-046 Cannot create testfile.

You can create the testfile only via the read-write mount point:

#cd /i) .rw
#touch testfile
#1s

g. Create another fileset:

Create a logical volume /dev/usrbin with five blocks of 4MB:
#mklv -t 1fs -y usrbin rootvg 5

Create an aggregate on the /dev/usrbin:

#newaggr -aggreg /dev/usrbin -bl 8192 -fr 1024 -overwrite
Export the aggregate:

#mkdfs1fs -d /dev/usrbin -n usrbin

Create a fileset without a mount point:

#mkdfs1fs -f usrbin.ft -n usrbin

See if the fileset is correctly exported:

#fts 1sfldb

h. Replicate this fileset before you create the mount point:

1)

2)

Define the replication type for usrbin.ft:
#fts setrepinfo -fileset usrbin.ft -rel

Define the same machine as a replication site:

#fts addsite -fileset usrbin.ft -server /.:/hosts/ev2 -aggr usrbin

3) Create the read-only fileset and force replication from the read-write

1

source:

#fts release -fileset usrbin.ft

Mount the fileset and test access to it:

Create the regular mount point /:/usrbin, which becomes the
read-only access path. Since /: is read-only, you must do it as
follows:

#fts crmount /:/.rw/usrbin usrbin.ft

2) Update the read-only copy of root.dfs to make the directory /:/usrbin

3) Force the local cache manager to read the new fileset information:

available:
#fts rel root.dfs

#cm checkfilesets

You will not be able to create files in /:/usrbin, because this path
accesses the read-only fileset. You can access the read-write fileset via

Chapter 3. Implementing DCE Cells

77

[:l.rw/usrbin or you can create a read-write mount point /:/.usrbin, if you
do not plan to keep /:/.rw available for daily use.

To create the read-write mount point issue:

fts crmount /:/.rw/.usrbin usrbin.ft -rw

Configuring machine ev3
1. Configure the DTS server and DCE core clients:
#mkdce -n itsc.austin.ibm.com -s ev2 -c ev2 -t courier sec _cl cds _cl dts global
2. Configure the CDS replication server:
#mkdce cds_second

See 4.1.6.1, “Replicating a CDS Server” on page 98 for more details about
CDS replication.

3. Configure the security replication server:
#mkdce -R -r ev2 sec_srv
4. Configure the DFS components:
a. Force a bind to the master security server:
export BIND PE_SITE=1

See the remarks about the timing problem in 4.2, “Configuring DFS” on
page 101 for reasons why this step is necessary.

b. Configure the DFS client:
#mkdfs dfs_cl

c. Configure the the Fileset Database (FLDB):
#mkdfs -s /.:/hosts/ev2 dfs_fldb

d. Configure the DFS File server with the option to load the kernel
extension:

#mkdfs -s /.:/hosts/ev2 -e dfs_srv

e. Configure the DFS replication server machine:
#mkdfs -s /.:/hosts/ev2 dfs_repsrv

f. Release the forced connection to the master security server:
unset BIND PE_SITE

g. Create logical volumes as large as on ev2:

#mklv -t 1fs -y 1fsroot rootvg 1
#mklv -t 1fs -y usrbin rootvg 5

h. Create the aggregates:

#newaggr -aggreg /dev/1fsroot -b1l 8192 -fr 1024 -overwrite
#newaggr -aggreg /dev/usrbin -b1 8192 -fr 1024 -overwrite

i. Export the aggregates:

#mkdfs1fs -d /dev/1fsroot -n 1fsroot
#mkdfs1fs -d /dev/usrbin -n usrbin

j. Define the new replication site:

#fts addsite -fileset root.dfs -server /.:/hosts/ev3 -aggr 1fsroot
#fts addsite -fileset usrbin.ft -server /.:/hosts/ev3 -aggr usrbin

78 Using and Administering DCE

k. Create the read-only filesets and force replication from the read-write
sources:

#fts release -fileset root.dfs
#fts release -fileset usrbin.ft

I. If this DFS client had access to /: before the fileset usrbin.ft was created,
you would have to Force the local cache manager to read the new fileset
information:

#cm checkfilesets

Configuring machine evl
1. Configure the core components:

#mkdce -n itsc.austin.ibm.com -s ev2 sec_cl cds_cl dts_global
2. Configure the DFS components:

#mkdfs dfs_cl

3. If this DFS client had access to /: before the fileset usrbin.ft was created, you
would have to force the local cache manager to read the new fileset
information:

#cm checkfilesets

Configuring machine ev4

1. Configure the core components:

#mkdce -n itsc.austin.ibm.com -s ev2 -c ev2 sec cl cds cl dts_Tocal

2. Configure the DFS components:
#mkdfs dfs_cl

3. If this DFS client had access to /: before the fileset usrbin.ft was created, you
would have to force the local cache manager to read the new fileset
information:

#cm checkfilesets

3.2.4.3 Scenario Experiences
Same discussion as in scenario 5a. see 3.2.3.3, “Scenario Experiences” on
page 72. Everything is slower as with X.25.

3.2.4.4 Special Issues
Same discussion as in scenario 5a. see 3.2.3.4, “Special Issues” on page 72.

3.2.4.5 Response Times
Everything works a bit slower than over X.25 (scenario 5a).

3.2.4.6 Performance discussion

See the discussion in scenario 5a, 3.2.3.6, “Performance Discussion” on

page 72. Assuming that we have excluded the X.25 interface in scenario 5a, the
SLIP works exactly the same as the X.25 environment. In both scenarios we rely
on TCP/IP routing. SLIP is simply slower in our setup. This is a matter of
modem speed and can be improved with faster modems.

Chapter 3. Implementing DCE Cells 79

3.2.4.7 Availability Discussion

Same discussion as in scenario 5a, 3.2.3.7, “Availability Discussion” on page 74.

80 Using and Administering DCE

3.2.5 Scenario 6: A Branch Connected with Two Links

SCENARIO 6

il & 9V3
DGE Security Replica @_1
DCE CDS nepuca ﬁ w
DGE DFS Repica +FLDB DOE Gliens
[splea DCE DTS Local
: evd ==

DCE Securlty Server

BEE SES] FLDB I
ewer +

DCE DTS Local DCE DTS Local

DCE Clients

Figure 24. Scenario 6: A Branch Connected with Two Links

Due to lack of time we did not install this scenario. Nevertheless we would like
to discuss it.

The main purpose of this scenario is to provide redundant connections to the
main site. This allows us to make DCE highly available in remote sites without
having to install replica servers. We might want to install replica servers for
performance reasons. However, this does not affect the recommendation to
exclude all WAN interfaces from being used in binding handles. For instance on
a system with two X.25 interfaces and one SLIP interface you would issue the
following command:

#echo "export RPC_UNSUPPORTED_NETIFS=xt0:xtl:s10” >> /etc/environment

The result is that when DCE server programs export all their binding interfaces,
these interfaces are ignored and hence not exported to CDS or the local RPC
map.

In this way we completely rely on TCP/IP routing for DCE calls crossing the WAN
links. Suppose ev3 needs access to the security server because a user logs in.
It needs to contact CDS first, to find a binding handle for the security server. The
servers are all on evl. Since broadcasting is not supported on most WAN links
or IP routers, the cds_clerk on ev3 needs a hint where CDS is. This is done by
the command cdscp defined cached server This command is internally executed
by mkdce -c CDS_server name. Since CDS on evl has only exported its token-ring
(T/R) interface, the binding handle for CDS contains the T/R IP address. Thanks
to correct IP routing definitions the call from ev3to evl's T/R network interface
will be found over X.25 or SLIP, depending on which one is available and how
the routes are set.

Chapter 3. Implementing DCE Cells 81

82

The call to CDS will return possible binding handles for the security server.
Again, since we had excluded X.25, these will all be T/R addresses. The call to
the security server will find its way to evl thanks to IP routing.

With dynamic IP routing and multiple links we will never get stuck with DCE
timeouts because of having tried a binding handle for which the link is not
available. Remember that server binding handles are randomly selected by all
DCE/DFS clients. If X.25 were not excluded and we happened to get a binding
handle for an X.25 network interface, chances are higher that IP routing would
direct us to the X.25 link even though it might be down. We would experience a
30 second DCE timeout, before the next handle is tried, which again could be an
X.25 binding handle.

The problem of avoiding timeouts is shifted from DCE to TCP/IP, or setting up
correct IP routing respectively. Most likely you will set up dynamic routing with
routed or preferably gated, because it supports more routing protocols and is
more sophisticated. If TCP/IP encounters a problem with one link, the routes are
adjusted to use the backup link. Routing mechanisms might even be able to
optimize network usage and prioritize faster links, if there are redundant routes
between two nodes. Multi-protocol routers are usually able to do this.

The simplest case of redundant network connection to a branch is shown in
Figure 24 on page 81. The X.25 network is the primary link, whereas the SLIP
connection is a backup link only and is usually not up. The SLIP link would be
manually started, when a network operator is alerted that the X.25 network is
down. If the routes are not managed by routing daemons on the DCE client
machines, the routes then have to be manually changed with the route
command.

There are many automation possibilities to get an environment somewhere
between this most simple case of a SLIP backup connection and a full fledged
router network. The two connections can be any combination of X.25, ISDN, SLIP
or even something faster. The only concern is they are really independent from
each other to minimize the chance that both links become unavailable at the
same time.

3.2.5.1 Performance Discussion
The advantage of highly available network connections is we can focus on load
balancing issues when we plan the layout of the server in the DCE cell.

As discussed in scenario 5a, 3.2.3.6, “Performance Discussion” on page 72,
there are many factors which need to be considered for a decision on whether to
configure replicated servers in branches. The slower the network link the more
sophisticated the distributed CDS or DFS design needs to be to avoid
unnecessary calls over the slow links.

3.2.5.2 Availability Discussion

By having redundant links there is no need for replicated servers in the
branches to have a highly available DCE environment. As outlined above there
are many levels of comfort with which such an environment can be built. The
nice thing about shifting the responsibility for availability from DCE to TCP/IP is,
we can decouple performance and availability issues to a great extent. We can
limit our discussion about server replication to performance issues.

Using and Administering DCE

Chapter 4. Administering DCE Cells

We identified a list of tasks the administrator might have to perform in their DCE
cell(s) and which we felt were not documented sufficiently or not supported by
the existing commands and tools. We created the task list from our own
experience with customers and from issues which were discussed in news
groups or with development.

We grouped them into categories of tasks, some of which are overlapping and
could have been assigned to other categories as well. You might find a certain
task you want to perform in a different place than you would expect, or you
might not find it all, because, besides our creativity time was a limiting factor.
We cannot claim to present a complete workbook for administrators, but we
believe at least some useful guidelines, tools, and step-by-step instructions are
included.

Our task categories are:
Configuring a Cell

This provides step-by-step instructions on how all the scenarios have been
configured and guidelines on how to prepare the machines before a DCE
installation.

Configuring DFS

DFS is well covered in the recently published ITSO publication The
Distributed File System (DFS) for AIX/6000. This section gives a short
step-by-step configuration guideline on how to set up a DFS server with a
couple of filesets and a DCE client. It also discusses experiences with fileset
replication and considerations about having the users’ home directories in
DFS.

Changing Cell Configurations

Once defined, cells cannot easily be reconfigured. Changes of IP addresses,
host names, server locations or even splitting and joining cells are realistic
challenges for administrators. Machines can be added and servers can be
replicated or moved as the customers business is growing. Faster networks
can be added and slower networks can be removed.

Backup/Restore

All of the core DCE servers and DFS servers can be replicated, so there
seems to be no need for backup. However, one can never completely
exclude bad things from happening. Databases can be corrupted by
inadvertent administrator actions or software defects.

Mass user and group management

This category shows how to perform tasks such as adding, modifying,
deleting users, accounts, and groups in DCE on a large scale.

Managing the cell_admin account

cell_admin is per default the omnipotent DCE account. If the cell_admin
password or the entire cell_admin account gets lost, specific steps have to
be followed to restore the lost information.

Integrating an NFS/NIS environment

[J Copyright IBM Corp. 1994 83

Many customer installations today use NFS/NIS to store common
configuration files and share files. The purpose of this section is to discuss
and give instructions on how to integrate NFS/NIS into DCE/DFS and how to
migrate from NFS/NIS to DCE/DFS.

DCE with HACMP/6000

This section gives instructions on how to set up the security or CDS server in
an HACMP/6000 cluster, to make them available for write access at any time.

4.1 Configuring a Cell

This section discusses the following topics:
Preparing for DCE installation and configuration
Installing DCE
Configuring DCE core server and clients
Starting and stopping servers
Replicating the core servers

Chapter 3, “Implementing DCE Cells” on page 43 gives step-by-step instructions
for configuration of specific scenarios.

4.1.1 Preparing for DCE Configuration

84

The purpose of this section is to guide you through all the necessary preparation
steps that are required and the same for all scenarios. These are:

1. Preparing disk space

2. Checking network name resolution
3. Checking network routing

4. Checking the network interfaces
5.

Synchronizing the system clocks

4.1.1.1 Preparing Disk Space

Installation and configuration of DCE servers and clients requires some reserved
disk space which should not be overwritten or used by other components. The
safest way to guarantee independence is to create separate file systems. These
file systems should be created before DCE is installed, meaning before you
execute installp.

We also suggest a careful review of the release notes associated with the
delivered DCE products to determine the disk space requirements for each DCE
component.

1. Paging space:
We suggest at least 100MB allocated for paging space.

#1sps -a

Page Space Physical Volume Volume Group Size %Used Active Auto Type
hd61 hdiskl rootvg 32MB 76 yes yes Tv
hd6 hdisk0 rootvg 32MB 75 yes yes Tv

Using and Administering DCE

We have a total of 64MB for paging space. Since more than 70% is used we
suggest you increase it. To increase both disks to 60MB each, we have to
add 7 partitions of 4MB:

#chps -s'7' hdé

#chps -s'7' hd6l

. Disk space for /var/dce:

The /var file system is used by the operating to store various files which can
grow in size and number, such as the print spool and trace files. On the
other hand DCE also has some files which use more and more disk space,
for instance, core databases and credential files. It is important for AIX and
DCE not to disturb each other.

The size of this file system actually depends on what is going to be installed
on the system. The most current requirements for the specific components
can be found in the release notes. Since we had enough disk space we
decided to use 20MB on all systems to hold all possible server and client
code:

r r

#crfs -v jfs -g' rootvg' -a size='40000" -m'/var/dce' -A'yes' -p'rw
#mount /var/dce

. Disk space for /var/dce/adm/dfs/cache:

Creating this file system is helpful on a DFS client side to avoid getting stuck
because of an incorrectly defined cache that could fill up the /var/dce file
system or because of files underneath /var/dce using up space meant to be
reserved for disk cache. The following example makes room for a 10MB
cache on a 12MB file system.

#crfs -v jfs -g rootvg’ -a size='24000" -m'/var/dce/adm/dfs/cache’ \
-A"yes' -p'rw
#mount /var/dce/adm/dfs/cache

. Disk space for /var/dce/rpc/socket:

DCE uses a large number of inodes to create sockets. Creating this file
system can be helpful.

#crfs -v jfs -g' rootvg' -a size='10000" -m'/var/dce/rpc/socket’\
-A"yes' -p'rw'

#mount /var/dce/rpc/socket

— Note

It was a bug in the beta code we were using that these zero size socket
files were not cleaned up. Try it without creating this separate file
system, but keep an eye on the number of these files.

. Other candidates are /var/dce/directory and /var/dce/security:

These directories contain the databases of CDS and security service
respectively. If they become very large, separate file systems should be
considered.

Chapter 4. Administering DCE Cells 85

4.1.1.2 Checking Network Name Resolution

Some commands expect a hostname as an input parameter. Internally this
name is used to find the internet address. Be sure that forward and reverse
translation is correctly working for all involved systems.

1. Forward resolution. If you use the same hostname for different network
interfaces, be sure the name resolves to the primary interface you want to
be used. To achieve this the primary interface must be defined first.

#hostname

evl

#host evl

evl.itsc.austin.ibm.com is 9.3.1.68
#host ev2

ev2.itsc.austin.ibm.com is 9.3.1.120

2. Reverse resolution:

#host 9.3.1.68
evl.itsc.austin.ibm.com is 9.3.1.68
#host 9.3.1.120
ev2.itsc.austin.ibm.com is 9.3.1.120

If it is not working correctly or as expected, it should be fixed. To change the
definitions of the system on which you are running the commands (evl) you call
the following SMIT menu:

#smit tcpip
-> Minimum Configuration & Startup

If name resolution of a remote system returns an incorrect value or times out
you must fix the name server database or the /etc/hosts file, if you are not
running a DNS (domain name server).

4.1.1.3 Checking Network Routing

Before configuring DCE, make sure that all machines in your network
communicate correctly with each other using TCP/IP protocol. You can use the
#ping command to test all connections. You can also use the following
command to know which route is in use:

#netstat -r

Routing tables

Destination Gateway Flags Refcnt Use
Interface

Netmasks:

(root node)

(0)0 ff00 0

(0)0 ffff ff00 0O

(root node)

Route Tree for Protocol Family 2:

(root node)

default evd UG 1 104 en0
193.1.10 ev3 10 47708 en0
127 loopback U 1 3479 100
(root node)

[

Route Tree for Protocol Family 6:
(root node)
(root node)

86 Using and Administering DCE

Be very careful when using the default routing. Setting a default route prevents
the node from doing dynamic routing. The recommendation is to use gated for
routing, which is at present the most sophisticated routing daemon.

—— Most common source of failure

Incorrect routing is the most common source of failure not only in TCP/IP but
also in DCE. Even if in TCP/IP you get through to another node, you might
experience timeouts in DCE, because it might first try to use another
interface for which no route is available.

In order for a ping command to succeed the route must be accurate in both
directions.

4.1.1.4 Checking the Order of Network Interfaces

The order of the network interfaces determines the way a server's interfaces or
binding handles are exported to CDS. You can check the network interfaces with
this command:

#netstat -i

name Mtu Network Address Ipkts Ierrs Opkts Oerrs Coll
1o0 1536 <Link> 14992 0 14992 0 0
100 1536 127 Toopback 14992 0 14992 0 0
tr0 1492 <Link> 17654 0 14115 0 0
tr0 1492 9.3.1 evl 17654 0 14115 0 0
xt0 576 <Link> 3 0 30 0
xt0 576 192.1.20 evl 3 0 30 0

What is discussed here is not relevant for pure client systems. They do not
export any interfaces.

As you can see trO comes before xt0, which is as it should be. When a server
exports its interfaces, they are exported in the order they are listed with the
netstat command. If a client did a lookup in CDS, he would get the TCP binding
handle associated with trO first. Even though all DCE/DFS clients choose their
server and binding handles at random, we observed that the first handle was
chosen more often. So if you have multiple interfaces which are considerably
different in speed, we recommend to change the order so that the fastest is on
the top of the list. If you have, for instance, a fast FDDI connection and an
Ethernet between the same systems, you probably want to give FDDI a higher
probability of being chosen.

To move an interface from the top to the end of the list you must delete it with
rmdev -d1 and redefine it.

Another option in AIX DCE 1.3 is the ability to exclude a network interface from
ever being exported into CDS. For example, if you want to only use trO, you
must set up an environment variable in the /etc/environment file like this before
you configure any server:

RPC_UNSUPPORTED_NETIFS=xt0
export RPC_UNSUPPORTED NETIFS

Chapter 4. Administering DCE Cells 87

If you exclude xt0 anyway, the order returned by the netstat command is not
relevant in this case.

— Exclude WAN interfaces

We recommend always excluding the WAN interfaces (X.25 or SLIP). You can
always rely on the fast LAN interfaces and TCP/IP routing mechanisms. If a
DCE service call actually involves two nodes connected over a WAN
connection, it will find its way thanks to IP routing. In this way DCE never
tries to connect over a specific WAN connection, but leaves the decision up
to IP, which might have sophisticated routing selection mechanisms in place
to find the fastest available route.

DCE, by itself, does not have any inherent algorithms. If you do not exclude
these interfaces in DCE, you are more likely to experience timeouts because
DCE might (randomly) choose a network link that is temporarily unavailable.

Even if you do not have redundant network links right now, you might put a
sophisticated router network in place later on. It is much easier to
implement, if you do not have to get rid of unwanted binding information in
the whole CDS.

4.1.1.5 Synchronizing the System Clocks

DCE services rely on highly synchronized time. If for instance the clock value of
a client system requesting a ticket differs too much from the security server’'s
clock, no ticket is granted. The first time this may happen is when you configure
a DCE client.

It is very important that you start with synchronized clocks. Issue the setclock
command on all systems to get one specific system’s clock value and use that
on all other systems. For instance, to set the clock on ev2: according to evl's
clock, issue the following command on evZ2:

#setclock evl

4.1.2 Installing the DCE Code

88

Installing DCE is the procedure of loading the software on to the harddisk. Call
smit installp and choose the appropriate program objects to install.

The point we want to make here is that installation is a separate step that must
be executed after all preparation steps, particularly after all the necessary file
systems have been created.

If you have not done this yet, go back to 4.1.1, “Preparing for DCE Configuration”
on page 84.

Check with the release notes whether certain PTFs are required.

If you are upgrading DCE in an existing cell, you do not have to unconfigure and
reconfigure the cell. Perform the following steps:

1. Stop all DCE services

2. Install the new DCE release for all DCE components

3. Reboot the machine

Using and Administering DCE

4. Restart DCE

The DCE configuration and the databases are preserved. However, we
recommend to backup all your DCE databases prior to the upgrade. See 4.4,
“Backup/Restore and Other Housekeeping Tasks” on page 142 for details

4.1.3 Configuring the Core Services

This section describes how to initialize a cell with the core services. Here are
the steps to follow:

1. Configure the Security server machine
2. Configure the CDS server machine

3. Configure the DTS server machine

The following steps to configure a cell are common to all scenarios we have
defined in Chapter 3, “Implementing DCE Cells” on page 43. We use the cell
name itsc.austin.ibm.com for all tasks performed.

4.1.3.1 Configuring the Security Service
Call SMIT and follow the indicated path or call SMIT with the fastpath name:

#smitty dce
-> Configure DCE/DFS
-> Configure DCE/DFS Servers
-> SECURITY Server
-> 1 primary
(fastpath = mkdcesecsrv)

SECURITY Server

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]

* CELL name [/.../itsc.austin.ibm.com]
* Cell ADMINISTRATOR' s account [cel1_admin]

PRINCIPALS Lowest possible UNIX ID [100]

PRINCIPALS Lowest possible UNIX ID [100]

GROUPS Lowest possible UNIX ID [100]

GROUPS Lowest possible UNIX ID [100]

ORGANIZATIONS Lowest possible UNIX ID [100]

ORGANIZATION Lowest possible UNIX ID [100]

MAXIMUM possible UNIX ID [32767]

MAXIMUM possible UNIX ID [32767]

— —

Password to be assigned to initial DCE accounts:
Re-enter password to be assigned to initial DCE accounts:

Configuring RPC Endpoint Mapper (rpc)...

RPC Endpoint Mapper (rpc) configured successfully
Configuring Security Server (sec_srv)...

Password must be changed!

Configuring Security Client (sec_cl)...

Security Client (sec_cl1) configured successfully
Security Server (sec_srv) configured successfully

Chapter 4. Administering DCE Cells 89

90

Current state of DCE configuration:

rpc COMPLETE ~ RPC Endpoint Mapper
sec_cl COMPLETE ~ Security Client
Sec_srv COMPLETE Security Server (Master)

The following command has the same effect:
#mkdce -n itsc.austin.ibm.com sec_srv

When you configure the security server sec_srv, the security client sec_cl is
automatically configured for you. At this point you can start to configure a CDS
server machine. This can be done on the same machine as the security server
machine or on another machine in your network. If you configure the CDS
server on another machine, you have to make sure that the route between the
security server machine and the machine where you are going to configure the
CDS server are set up correctly.

4.1.3.2 Configuring the CDS Server
Call SMIT and follow the indicated path or call SMIT with the fastpath name:

#smitty dce
-> Configure DCE/DFS
-> Configure DCE/DFS Servers
-> CDS (Cell Directory Service) Server
-> 1 initial
(fastpath = mkdcecds)

CDS (Cell Directory Service) Server
Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]

* CELL name [/.../itsc.austin.ibm.com]
* SECURITY Server [evl]<<--Fi11 this.

* Cell ADMINISTRATOR' s account [cell_admin]

* | AN PROFILE [/.:/Tan-profile]

—

Enter password for DCE account cell _admin:

Password must be changed!

Configuring Initial CDS Server (cds_srv)...

Configuring CDS Clerk (cds cl)...

Configuring CDS Clerk (cds cl)...

Waiting (up to 2 minutes) for cdsadv to find a CDS server.
Found a CDS server.

Initializing the namespace ...
Modifying acls on /.:
Creating /.:/cell-profile
Exporting cds-clerk and cds-server attributes
Modifying acls on /.:/subsys/dce/sec
Modifying acls on /.:/cell-profile
Modifying acls on /.:/Tan-profile
Modifying acls on /.:/hosts
Modifying acls on /.:/sec
Modifying acls on principal
Modifying acls on principal/krbtgt ...
Modifying acls on principal/hosts/evl ...

Using and Administering DCE

Modifying acls on group ...

Modifying acls on group/subsys ...
Modifying acls on group/subsys/dce ...
Modifying acls on org ...

Modifying acls on policy ...

Modifying acls on /.:/sec/replist
Modifying acls on /.:/evl ch

Initial CDS Server (cds_srv) configured successfully
CDS Clerk (cds_c1) configured successfully
Current state of DCE configuration:

cds_cl COMPLETE ~ CDS Clerk

cds_srv COMPLETE Initial CDS Server

rpc COMPLETE ~ RPC Endpoint Mapper
sec_cl COMPLETE Security Client

Sec_srv COMPLETE Security Server (Master)

The following command has the same effect:
#mkdce -n itsc.austin.ibm.com -s evl cds_srv

When you configure the CDS server machine, the CDS client or, more accurately,
the CDS clerk is automatically configured.

4.1.3.3 Configuring the DTS Server
Call SMIT and follow the indicated path or call SMIT with the fastpath name:

#smitty dce
-> Configure DCE/DFS
-> DTS (Distributed Time Service) Server
(fastpath = mkdtssrv)

DTS Server

Type or select values in entry fields.
Press Enter AFTER making all desired changes.
[Entry Fields]

Type of SERVER local +
Type of COURIER noncourier +
* CELL name [/.../itsc.austin.ibm.com]
* SECURITY Server [evl]
CDS Server (If in a separate network) []
* Cell ADMINISTRATOR's account [cel1_admin]
* LAN PROFILE [/.:/1an-profile]

— —J

Enter password for DCE account cell_admin:
Configuring Local DTS Server (dts_local)...
Local DTS Server (dts local) configured successfully

Current state of DCE configuration:

cds_cl COMPLETE CDS Clerk

cds_srv COMPLETE Initial CDS Server
dts_local COMPLETE Local DTS Server

rpc COMPLETE RPC Endpoint Mapper
sec_cl COMPLETE ~ Security Client

sec_srv COMPLETE Security Server (Master)

The following command has the same effect:

Chapter 4. Administering DCE Cells 91

4.1.4 Configuring

#mkdce -n itsc.austin.ibm.com -s evl dts_local

Normally, we have to have at least three DTS servers machines per LAN in the
cell. Remember, you cannot configure a DTS server on a machine where a DTS
client is already configured: you have to first unconfigure the DTS client and
then configure the DFS server.

4.1.3.4 Configuring Multiple Servers at One Time
When using the mkdce command from the command line you can specify all
servers on the same machine at once:

#mkdce -n itsc.austin.ibm.com sec_srv cds_srv dts_local

the DCE Clients

As we have seen, when we configure a DCE core server, the client part is
automatically configured. Other clients must be explicitly configured.

In AIX DCE 1.3 we have the ability to split the configuration: The part that
requires write access to CDS and the security server can be done centrally by
the cell administrator. In fact this step prepares the server machine(s) to accept
new clients machine in the cell.

The system administrator of a client machine need not know cell_admin's
password to configure his machine into the DCE cell.

The split configuration features also includes split unconfiguration. This actually
enables large scale central DCE administration.

We propose two methods here. You can choose the method you want:
Full configuration

This method performs all configuration steps only on the client machine,
which requires cell_admin’s password. This means the DCE administrator
has to do everything by themselves or to give away their password. As long
as all machines are in the same (trusted) LAN you can remotely login to
each client.

Split configuration

This method is very helpful. You will not be constrained with space and time.
The cell_admin can preconfigure DCE client machines. Each DCE client
machine can be configured simply by a local system administrator at their
convenience without knowing cell_admin's password.

Finally we want to discuss our experiences with the split configuration.

4.1.4.1 Full Configuration Method

We assume you are logged in to the machine where you will configure DCE
clients. Call SMIT and follow the indicated path or call SMIT with the fastpath
name:

#smitty dce
-> Configure DCE/DFS
-> Configure DCE/DFS Clients
-> 1 full configuration for this machine
(fastpath = mkdceclient)

92 Using and Administering DCE

Full DCE/DFS Client Configuration

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]

* CELL name [/.../itsc.austin.ibm.com]
* CLIENTS to configure [rpc sec_c1 cds_c1 dts_cl]
* SECURITY Server [evl]

CDS Server (If in a separate network) [evil]
* Cell ADMINISTRATOR' s account [cel1_admin]
* LAN PROFILE [/.:/1an-profile]

Client Machine DCE_HOSTNAME [dce_ev4]

The following fields are used
ONLY if a DFS client is configured
The following fields are used
ONLY if a DFS client is configured

* DFS CACHE on disk or memory? [disk] +
* DFS cache SIZE (in kilobytes) [10000]
* DFS cache DIRECTORY (if on disk) [/var/dce/adm/dfs/cache]

— —J

Password for DCE account cell admin:

Configuring RPC Endpoint Mapper (rpc)...
RPC Endpoint Mapper (rpc) configured successfully

Configuring Security Client (sec_cl)...
Password must be changed!
Security Client (sec_c1) configured successfully

Password must be changed!

Configuring CDS Clerk (cds cl)...

Waiting (up to 2 minutes) for cdsadv to find a CDS server.

Found a CDS server.
Modifying acls on hosts/dce_ev4
Modifying acls on hosts/dce evd/self
Modifying acls on hosts/dce ev4/cds-clerk
Modifying acls on hosts/dce ev4/profile
Modifying acls on /.:/Tan-profile

CDS Clerk (cds _c1) configured successfully

Configuring DTS Clerk (dts cl)...

DTS Clerk (dts _c1) configured successfully

Current state of DCE configuration:

cds_cl COMPLETE ~ CDS Clerk

dts_cl COMPLETE DTS Clerk

rpc COMPLETE ~ RPC Endpoint Mapper
sec_cl COMPLETE Security Client

Press Enter to continue
This following command has the same effect:
#mkdce -n itsc.austin.ibm.com -h dce ev4 -s evl all cl
At this point all DCE core clients are configured. See 4.2, “Configuring DFS” on

page 101 to understand how to configure a DFS server machine and a DFS client
machine.

Chapter 4. Administering DCE Cells 93

94

4.1.4.2 Split Configuration Method

With this type of configuration we have to consider two steps:

What is to be done by cell_admin?

What is to be done by a local system administrator?

Steps to be performed by cell_admin:

The following are the tasks to do by the cell_admin from any machine already
configured in the DCE cell. We assume, we are on machine evl and want to
preconfigure the DCE client machine ev4:

#smitty dce
-> Configure DCE/DFS

-> Configure DCE/DFS Clients
-> 3 admin only configuration for another machine
(fastpath = mkdceclient)

* CLIENTS to configure

* LAN PROFILE

Administrator DCE Client Configuration

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
[sec_cl cds_cl1] +

* Cell ADMINISTRATOR' s account [cel1_admin]
Client Machine DCE_HOSTNAME
* Client Machine IDENTIFIER

[dce_ev4]
[eva4]
[/.../itsc.austin.ibm.com/lan-profile]

—

Enter password for DCE account cell _admin:
Configuring Security Client (sec_c1) for dce_host dce_ev4 on

machine evd ...
Password must be changed!

Completed admin configuration of Security Client (sec_cl1) for
dce_host dce_ev4 on machine ev4
Configuring Security Client (sec_c1) for dce_host dce ev4 on

machine evd ...

Completed admin configuration of Security Client (sec_cl) for
dce_host dce_ev4 on machine ev4
Configuring CDS Clerk (cds c1) for dce host dce ev4 on

machine ev4 ...
Modifying acls
Modifying acls
Modifying acls
Modifying acls
Modifying acls

on
on
on
on
on

hosts/dce_ev4
hosts/dce_ev4/self
hosts/dce_ev4/cds-clerk
hosts/dce_ev4/profile
/.:/1an-profile

Completed admin configuration of CDS Clerk (cds c1) for
dce_host dce_ev4 on machine ev4

Cell administrator’s portion of client configuration has completed
successfully. Root administrator for ev4 should now
complete the client configuration on that machine.
Press Enter to continue

You must specify two machine names, which is new with AIX DCE 1.3:

Using and Administering DCE

Client Machine DCE_HOSTNAME [dce_ev4]
* Client Machine IDENTIFIER [ev4]

The DCE_HOSTNAME is the name under which the machine is known in DCE. It
is used for the machine principal name and the CDS entries. The IDENTIFIER is
the TCP/IP hostname. You can use the same name for both entries. If the DCE
hostname is not specified, the TCP/IP hostname is used. Pay attention to the
output display of the command to see what DCE hostname is generated to make
sure you use the same when you configure the client part. However, we
recommend always explicitly specifying both names (-h flag and -i flag) to avoid
problems. See also 5.1.2, “Split Configuration” on page 220.

Only sec_cl and cds_cl can be preconfigured with this method. Neither dts_cl
(for DTS client) nor dfs_cl (for DFS client) is proposed in the menu, but it is not a
problem. They can be configured on the DCE client machine by the local system
administrator without having to specify cell_admin’s password.

The same can be achieved with following command (the new flags are
highlighted):

#mkdce -o admin -h dce_ev4 -i ev4 sec_cl cds_cl

At this point the task of cell_admin is finished. The local system administrator
on the DCE client machine can configure their machine at their own pace.

Steps to be performed by the local system administrator:

The following shows how the local system administrator needs to configure his
machine as a DCE client. Call SMIT and follow the indicated path or call SMIT
with the fastpath name:

#smitty dce
-> Configure DCE/DFS
-> Configure DCE/DFS Clients
-> 2 Tocal only configuration for this machine
(fastpath = mkdceclient)

Local DCE/DFS Client Configuration

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]

* CELL name [/.../itsc.austin.ibm.com]
* CLIENTS to configure [rpc sec_cl cds_cl dts_cl dfs_cl]
* SECURITY Server [evl]
CDS Server (If in a separate network) [evil]
* Client Machine DCE_HOSTNAME [dce_ev4]

The following fields are used
ONLY if a DFS client is configured
The following fields are used
ONLY if a DFS client is configured

* DFS CACHE on disk or memory? [disk] +
* DFS cache SIZE (in kilobytes) [10000]
* DFS cache DIRECTORY (if on disk) [/opt/dcelocal/var/adm/dfs/cache]

Chapter 4. Administering DCE Cells 95

On this screen, you can select all clients. After pressing Enter the system
displays:

Configuring RPC Endpoint Mapper (rpc)...
RPC Endpoint Mapper (rpc) configured successfully

Configuring Security Client (sec_cl)...
Security Client (sec_cl1) configured successfully on the
local machine

Configuring CDS Clerk (cds cl)...
CDS Clerk (cds_c1) configured successfully on the
local machine

Configuring DTS Clerk (dts cl)...
DTS Clerk (dts_cl1) configured successfully on the
local machine

Current state of DCE configuration:

cds_cl COMPLETE ~ CDS Clerk

dts_cl COMPLETE DTS Clerk

rpc COMPLETE RPC Endpoint Mapper
sec_cl COMPLETE Security Client

Configuring DFS Client Machine (dfs_cl)...

dfsd: start sweeping disk cache files

dfsd: A11 DFS daemons started.

DFS Client Machine (dfs_c1) configured successfully

Current state of DFS configuration:
dfs_cl COMPLETE DFS Client Machine
Press Enter to continue

At this point, all clients are configured. You do not have to provide cell_admin’'s
password to configure the DCE client machine.

The same can be achieved with the following command, the new flags are
highlighted:

#mkdce -0 local -n itsc.austin.ibm.com -s evl -h dce_ev4 all_cl

4.1.4.3 Experience with Split Configuration

The new feature is easy to use and understand. It is very useful to administer
DCE client machine configurations in a large DCE cell. Owner of client
workstations could request DCE preconfiguration from the DCE administrator,
who does the admin part and lets the requester know what was defined. The
requester can then configure their own workstation into the cell. The procedure
could also be automated in a large DCE cell.

When we used the new feature we experienced one error situation. We did not
specify the DCE hostname. The server part installation was as follows:

mkdce -o admin -i ev8 sec_cl cds_cl

Enter password for DCE account cell_admin:

Configuring Security Client (sec_c1) for dce host ev8.itsc.austin.ibm.com on
machine ev8.itsc.austin.ibm.com ...

Password must be changed!

Completed admin configuration of Security Client (sec_cl1) for
dce_host ev8.itsc.austin.ibm.com on machine ev8.itsc.austin.ibm.com

Configuring Security Client (sec_c1) for dce host ev8.itsc.austin.ibm.com on

96 Using and Administering DCE

machine ev8.itsc.austin.ibm.com ...
Completed admin configuration of Security Client (sec_cl) for
dce_host ev8.itsc.austin.ibm.com on machine ev8.itsc.austin.ibm.com

Configuring CDS Clerk (cds _c1) for dce host ev8.itsc.austin.ibm.com on
machine ev8.itsc.austin.ibm.com ...

Modifying acls on hosts/ev8.itsc.austin.ibm.com
Modifying acls on hosts/ev8.itsc.austin.ibm.com/self
Modifying acls on hosts/ev8.itsc.austin.ibm.com/cds-clerk
Modifying acls on hosts/ev8.itsc.austin.ibm.com/profile
Modifying acls on /.:/lan-profile

Completed admin configuration of CDS Clerk (cds c1) for
dce_host ev8.itsc.austin.ibm.com on machine ev8.itsc.austin.ibm.com

Cell administrator’s portion of client configuration has completed
successfully. Root administrator for ev8.itsc.austin.ibm.com should now
complete the client configuration on that machine.

Nothing wrong is reported and everything seems correct, but the client will not
install correctly. Since the DCE hostname was not specified, the TCP/IP name
was taken which resolves into a full domain name.

The local part of the client installation on ev8 then failed with an invalid
password:

mkdce -n /.../itsc.austin.ibm.com -s ev7 -o local sec_cl cds_cl
Configuring RPC Endpoint Mapper (rpc)...
RPC Endpoint Mapper (rpc) configured successfully

Configuring Security Client (sec_cl)...
Sorry. Password Validation Failure. - Invalid password (dce / sec)
Cannot authenticate as DCE user hosts/ev8/self
Before you reconfigure, your cell administrator must reset
the password for DCE user hosts/ev8/self.
Current state of DCE configuration:
rpc COMPLETE ~ RPC Endpoint Mapper
sec_cl PARTIAL Security Client

The DCE client hostname was omitted (-h ev8). Here the configuration procedure

generated ev8 from the local hostname for the DCE hostname and tried to
authenticate as principal hosts/ev8/self which does not exist.

We recommend to always specify the DCE hostname for both sides of the split
configuration.

4.1.5 Starting and Stopping DCE

You can start DCE manually at your convenience or do it automatically at
machine boot time:

1. You can manually start and stop DCE processes at any time:
For instance the CDS server and client on a CDS server machine:

#/etc/dce.clean cds
#/etc/rc.dce cds

Or all DCE services, including DFS:

Chapter 4. Administering DCE Cells

97

#/etc/dce.clean
#/etc/rc.dce

The dfsd process cannot be stopped, though. You must reboot the machine,
if you need to restart dfsd.

2. You can also start DCE automatically at machine boot time.

You must put the /etc/rc.dce script file into the /etc/inittab file. Following are
the lines you need to add in the inittab file:

srcmstr:2:respawn:/etc/sremstr # System Resource Controller
rctcpip:2:wait:/etc/rc.tcpip > /dev/console 2>&1 # Start TCP/IP daemons
rcdce:2:wait:/etc/dce/rc.dce core > /dev/console 2>81:
rcdfs:2:wait:/etc/dce/rc.dfs > /dev/console 2>&1
rcnfs:2:wait:/etc/rc.nfs > /dev/console 2>&1 # Start NFS Daemons
rcdfsnfs:2:wait:/etc/dce/rc.dfsnfs > /dev/console 2>&1

You can put /etc/rc.dfs and /etc/rc.dfsnfs in the inittab file if you want to start
them automatically.

4.1.6 Replicating DCE Core Services

98

DCE core services that can be replicated are CDS server, security server and
DTS server. For the DTS server the term replication is not appropriate, we
would rather use the term redundancy. For DFS replication see 4.2.3,
“Replicating DFS Server” on page 107.

Replication increases availability and load-balancing, but you should know that
DCE replication has its limitations, replicated resources are read-only. Write
access might be unavailable at times, when a primary server fails. The security
server replicates its entire registry database as a whole, whereas the CDS
database can be distributed.

In this section we will discuss:
Configuring a CDS replication server

Configuring a security replication server

According to Figure 18 on page 48 we replicate the CDS server and the security
server on machine ev4.

4.1.6.1 Replicating a CDS Server
The following are the steps to follow on the machine where you want to add
another CDS server. Our example uses ev4:

#smitty dce
-> Configure DCE/DFS
-> Configure DCE/DFS Servers
-> CDS (Cell Directory Service) Server
-> 2 additional
(fastpath = mkcdssrv)

Using and Administering DCE

CDS (Cell Directory Service) Server

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]

* CELL name [/.../itsc.austin.ibm.ccom]
* SECURITY Server [evi]
Initial CDS Server (If in a separate network) 1
* Cell ADMINISTRATOR' s account [cell_admin]
* | AN PROFILE [/.:/1an-profile]

— —J

Enter password for DCE account cell _admin:

Password must be changed!

Configuring Additional CDS Server (cds_second)...
Modifying acls on ev4 ch

Additional CDS Server (cds_second) configured successfully

Current state of DCE configuration:

cds_cl COMPLETE ~ CDS Clerk

cds_second COMPLETE Additional CDS Server
dts_cl COMPLETE DTS Clerk

rpc COMPLETE ~ RPC Endpoint Mapper
sec_cl COMPLETE Security Client

Press Enter to continue

The previous display shows that we now have on this machine (ev4) an
additional CDS server. The component is called cds_second.

The following command has the same effect:

#mkdce -n itsc.austin.ibm.com -s evl cds_second

At this point, even if you have configured the machine to become a CDS
replication server, you have not achieved replication of any CDS data. You have
to explicitly specify, which directory to replicate. We have provided a shell script
copy_CH which replicates all CDS directories to the new CDS replication server.
This script is on the diskette associated with this publication. It is well
documented and can also be consulted to see how a directory can be replicated.

4.1.6.2 Replicating the Security Server
Call SMIT and follow the indicated path or call SMIT with the fastpath name:

#smitty dce
-> Configure DCE/DFS
-> Configure DCE/DFS Servers
-> SECURITY Server
-> 2 secondary
(fastpath = mkdcesecsrv)

Chapter 4. Administering DCE Cells 99

100

SECURITY Server

Type or select values in entry fields.
Press Enter AFTER making all desired changes.
[Entry Fields]

* CELL name [/.../itsc.austin.ibm.com]
* Cell ADMINISTRATOR' s account [cel1_admin]
PRINCIPALS Lowest possible UNIX ID [100]
* REPLICA name [ev4]
GROUPS Lowest possible UNIX ID [100]
ORGANIZATIONS Lowest possible UNIX ID [100]
* SECURITY Server [evi]
* | AN PROFILE [/.:/1an-profile]
MAXIMUM possible UNIX ID [32767]

— —

Enter password for DCE account cell_admin:

Password must be changed!
Configuring Security Server (sec_srv)...

Modifying acls on /.:/sec/replist

Modifying acls on /.:/subsys/dce/sec

Modifying acls on /.:/sec

Modifying acls on /.:

Modifying acls on /.:/cell-profile
Security Server (sec_srv) configured successfully

Current state of DCE configuration:

cds_cl COMPLETE ~ CDS Clerk

cds_second COMPLETE Additional CDS Server
dts_cl COMPLETE DTS Clerk

rpc COMPLETE ~ RPC Endpoint Mapper
sec_cl COMPLETE Security Client

sec_srv COMPLETE Security Server (Replica)

This following command has the same effect:
#mkdce -R -r ev4 -n itsc.austin.ibm.com -s evl sec_srv

The security server on this machine is marked (Replica). If you try to issue the
command: #sec_admin you will see that the default replica on the machine is ev4.

Default replica: /.../itsc.austin.ibm.com/subsys/dce/sec/ev4
Default cell: /.../itsc.austin.ibm.com

If the security master server goes down, you can continue to login into the cell
but it may take a long time. Response time depends on which machine you
issue the dce Togin command. For example on ev4 you can login immediately
into the cell, because clients always use the local server. Other machines in the
cell, which are bound to the master security server, will experience a timeout
before they look for an alternative to get tickets from.

Using and Administering DCE

4.2 Configuring DFS

The Distributed File System (DFS) is one of the first real DCE applications, it is
not considered a core service. See 1.3.3.6, “Distributed File System” on page 16
in this publication for a short description on DFS.

The Distributed File System (DFS) for AIX/6000 has more details on DFS. This
section gives a short step-by-step configuration guideline on how to set up a DFS
server with a couple of filesets and a DCE client. It also discusses experiences
with fileset replication, a feature which was not available before, and
considerations about having the users’' home directories in DFS.

The following topics are discussed in this section:

Configuring a DFS server
Configuring a DFS client
Configuring a DFS replication server
Defining home directories in DFS

— Timing problem

If a security replica server is installed in the cell, calls to the security service
are evenly split between the master and replica servers. When a registry
account is added and the local keytab entry is generated in the same
command, there is a timing problem, if the connection goes to a replica
security server. You'll get:

?(rgy_edit) Unable to add key - Registry object not found (dce / sec)
?(rgy_edit) Unable to add key - Requested key is unavailable (dce / sec)

The addition of the keytab entry comes too quickly after the creation of the
account. The account is not found yet on the security replica. mkdfs often
fails for this reason. If this happens, you must delete the principal and the
CDS entries, and then you must reboot the system, otherwise the bosserver
will fail to start.

To circumvent this problem, make sure the master security server is the first
entry in the file /var/dce/security/pe_site and export the BIND_PE_SITE
variable. After all DFS servers are installed use unset BIND_PE_SITE to
release the forced binding to the master security server.

4.2.1 Configuring a DFS Server

This section contains the basic steps to configure a DFS server. For more
detailed information see The Distributed File System (DFS) for AIX/6000.

Before starting to configure the DFS server make sure that all DCE core services
are configured. Below is a short summary description of the different DFS
components to be configured:

System control machine

The System Control Machine (SCM) controls various lists of users and
groups that can perform administrative functions on the different types of
DFS servers. The SCM houses the master copy of these lists that are
distributed to the various servers. A DFS domain is the set of machines that
is controlled by one SCM, respectively by the same lists of DFS
administrators. There can be multiple domains in a DCE cell.

Chapter 4. Administering DCE Cells 101

102

Fileset database machine

A Fileset database machine stores the Fileset Location Database (FLDB).
The purpose of the FLDB is to take a pathname for a file that is located in
the DFS namespace and determine the location of the file server that houses
that file.

File server machine

A file server machine is used to store and export DCE LFS file systems or
non-LFS file systems into the DFS namespace. In AIX/DCE a non-LFS file
system is a JFS (Journaled File System). AIX/DCE supports JFS and LFS file
systems. In our example we will use LFS file systems.

After having configured these servers, we can export the root.dfs fileset and
other filesets. Below are the steps to make available the DFS filespace. If you
plan to replicate a fileset, you can also replicate this fileset immediately after
having created the read-write fileset, which would prevent any DFS clients from
obtaining access to the read-write fileset via a regular mount point. See 4.2.3,
“Replicating DFS Server” on page 107 for a discussion on when to replicate
filesets and to create mount points.

4.2.1.1 Configuring an System Control Machine
Call SMIT and follow the indicated path or call SMIT with the fastpath name:

#smitty dce
-> Configure DCE/DFS
-> Configure DCE/DFS Servers
-> DFS (Distributed File Service) System Control Machine
(fastpath = mkdfsscm)

DFS System Control Machine

Type or select values in entry fields.
Press Enter AFTER making all desired changes.
[Entry Fields]

* CELL name [/.../itsc.austin.ibm.com]
* SECURITY Server [evl]
CDS Server (If in a separate network)
* Cell ADMINISTRATOR' s account [cell_admin]
* LAN PROFILE [/.:/Tan-profile]

— —J

Enter password for DCE account cell_admin:

Password must be changed!

Configuring DFS System Control Machine (dfs_scm)...

DFS System Control Machine (dfs_scm) configured successfully

Current state of DFS configuration:
dfs_scm COMPLETE ~ DFS System Control Machine

The following command has the same effect:

#mkdfs dfs_scm

Using and Administering DCE

4.2.1.2 Configuring a Fileset Location Database Machine
Call SMIT and follow the indicated path or call SMIT with the fastpath name:

#smitty dce
-> Configure DCE/DFS
-> Configure DCE/DFS Servers
-> DFS Fileset Database Machine
(fastpath = mkdfsfldb)

DFS Fileset Database Machine

Type or select values in entry fields.
Press Enter AFTER making all desired changes.
[Entry Fields]
Additional GROUP to administer filesets on this 0
machine
DFS System CONTROL machine to get 0
administration Tists from
FREQUENCY to update administration Tists (in sec) []

LOG file for administration Tist updates 1
* CELL name [/.../itsc.austin.ibm.com]
* SECURITY Server [ev1]
CDS Server (If in a separate network) []
* Cell ADMINISTRATOR' s account [cel1_admin]
* LAN PROFILE [/.:/1an-profile]

— —

Enter password for DCE account cell_admin:

Password must be changed!
Configuring DFS Fileset Database Machine (dfs_f1db)...
Waiting (up to 5 minutes) for Fileset Database machines to elect
a synchronization site...
/.../itsc.austin.ibm.com/hosts/evl has been elected
synchronization site for the Fileset Location Database.
DFS Fileset Database Machine (dfs_fldb) configured successfully

Current state of DFS configuration:
dfs_fldb COMPLETE DFS Fileset Database Machine
dfs_scm COMPLETE DFS System Control Machine

The following command has the same effect:

#mkdfs dfs_fldb

4.2.1.3 Configuring the DFS File Server Machine
Call SMIT and follow the indicated path or call SMIT with the fastpath name:

#smitty dce
-> Configure DCE/DFS
-> Configure DCE/DFS Servers
-> DFS File Server Machine
(fastpath = mkdfssrv)

Chapter 4. Administering DCE Cells 103

DFS File Server Machine

Type or select values in entry fields.
Press Enter AFTER making all desired changes.
[Entry Fields]

Additional GROUP to administer filesets on this 0
machine

Load LFS kernel extension? [yes] +

DFS System CONTROL machine to get [1

administration lists from
FREQUENCY to update administration Tists (in sec) [1

LOG file for administration list updates 0
* CELL name [/.../itsc.austin.ibm.com]
* SECURITY Server [evi]
CDS Server (If in a separate network) [1
* Cell ADMINISTRATOR' s account [cell_admin]
* | AN PROFILE [/.:/1an-profile]

— —

Password must be changed!
Configuring DFS File Server Machine (dfs_srv)...
DFS File Server Machine (dfs_srv) configured successfully

Current state of DFS configuration:

dfs_fldb COMPLETE DFS Fileset Database Machine
dfs_scm COMPLETE ~ DFS System Control Machine
dfs_srv COMPLETE ~ DFS File Server Machine

The following command has the same effect:

#mkdfs -e dfs_srv

4.2.1.4 Configuring a DFS root Fileset

1. Prepare an aggregate to house the root.dfs fileset:

Note that this aggregate need not be very large. Creating a logical volume
with one block (4MB) is sufficient. We suggest you do not use the root
directory /: to store files and data. This directory should only be used to
hold subdirectories or mount points for other filesets.

Create a logical volume with the following command:

#mklv -t 1fs -y 1fsroot rootvg 1

Make the /dev/Ifsroot logical volume a LFS logical volume:

#newaggr -aggregate /dev/1fsroot -block 8192 -frag 1024 -overwrite

*** sing default initialempty value of 1.

**% Jsing default number of (8192-byte) blocks: 511

**% Defaulting to 50 log blocks (maximum of 5 concurrent transactions).
/dev/r1fsroot: Already marked as non-BSD.

Done. /dev/rIfsroot is now an Episode aggregate.

The command newaggr is only available to be used on a logical volume.
It is used to prepare a logical volume for holding LFS fileset(s) as
opposed to one JFS.

2. Create the DFS root directory

This step performs multiple steps at one time. It exports the aggregrate
/devllfsroot, creates the root.dfs fileset, and mounts it at the DFS junction.

104 Using and Administering DCE

#mkdfs1fs -r -d /dev/1fsroot -n 1fsroot

readWrite ID 0,,1 valid
readOnly ID 0,,2 invalid

backup ID 0,,3 invalid
number of sites: 1
server flags aggr siteAge principal owner
evl RW 1fsroot 0:00:00 hosts/evl <nil>

Fileset 0,,1 created on aggregate 1fsroot of /.:/hosts/evl

At this point the DFS root directory /: is available. Before being able to
access the DFS namespace, you have to configure a DFS client. See 4.2.2,
“Configuring a DFS Client” on page 106 to understand how to configure a
DFS client. Or you can just type the following command to configure the DFS
client machine:

#mkdfs dfs_cl

Configuring DFS Client Machine (dfs cl)...

dfsd: start sweeping disk cache files

dfsd: A11 DFS daemons started.

DFS Client Machine (dfs_c1) configured successfully

Current state of DFS configuration:

dfs_cl COMPLETE DFS Client Machine

dfs_fldb COMPLETE ~ DFS Fileset Database Machine
dfs_scm COMPLETE DFS System Control Machine
dfs_srv COMPLETE DFS File Server Machine

You have to wait some time before being able to access the DFS filespace,
because at each restart the DFS file server has to reestablish the state of its
tokens with its DFS clients. This happens even if it is the first time you
configure DFS and there are no clients yet to wait for. When you type the
following command for the first time:

#cd /:
you will get a message after a while that the DFS server is in TSR (Token

State Recovery) mode. Normally after a minute or two, you can access the
DFS space.

4.2.1.5 Adding Another Fileset

This step is optional. We want to add another fileset to the DFS filespace. We
can add many filesets within a single LFS aggregate. However, we suggest not
adding another fileset to the rootlfs aggregate. We suggest creating another
aggregate for other filesets. Adding other filesets can be done on every DFS
Server machine.

Suppose we want to add another fileset usrbin.ft:

1. Create a logical volume usrbin with five blocks:

#mklv -t 1fs -y usrbin rootvg 5
. Create a new aggregate on /dev/usrbin:

#newaggr -aggregate /dev/usrbin -b1 8192 -fr 1024

*** sing default initialempty value of 1.

**% Jsing default number of (8192-byte) blocks: 2559

**% Defaulting to 50 log blocks (maximum of 5 concurrent transactions).
/dev/rusrbin: Marked as not a BSD file system any more.

Done. /dev/rusrbin is now an Episode aggregate.

Chapter 4. Administering DCE Cells 105

If you have some problem when creating the aggregate, try to use the
-overwrite option as shown here:

#newaggr -aggregate /dev/usrbin -b1 8192 -fr 1024 -overwrite

. Export the aggregate:

#mkdfs1fs -d /dev/usrbin -n usrbin

. Create a fileset with a mount point:

#mkdfs1fs -f usrbin.ft -m /:/usrbin -n usrbin

readWrite ID 0,,4 valid
readOnly ID 0,,5 idnvalid

backup ID 0,,6 invalid
number of sites: 1
server flags aggr siteAge principal owner
evl RW usrbin 0:00:00 hosts/evl <nil>

Fileset 0,,4 created on aggregate usrbin of /.:/hosts/evl
If you forgot to login to DCE and the following message appears:

fts crmount: error making mount point for /:/usrbin: Permission denied
Cannot create mount point /:/usrbin in DFS file space.

you should login as cell_admin and enter the following command:
#fts crmount -dir /:/usrbin -fileset usrbin.ft

At this point you should have two filesets available. If you issue the fts

1sfldb command, you should receive the following message

usrbin.ft
readWrite ID 0,,4 valid
readOnly ID 0,,5 invalid

backup ID 0,,6 invalid
number of sites: 1
server flags aggr siteAge principal owner
evl RW usrbin 0:00:00 hosts/evl <nil>
root.dfs

readWrite ID 0,,1 valid

readOnly ID 0,,2 invalid

backup ID 0,,3 invalid
number of sites: 1
server flags aggr siteAge principal owner
evl RW root.dfs 0:00:00 hosts/evl <nil>

Total FLDB entries that were successfully enumerated: 2

4.2.2 Configuring a DFS Client

Before configuring a DFS client you should verify the DCE core services are
configured properly. This task is the same on every machine that will house DFS

106

clients.

Make sure you have followed all the preparation steps outlined in 4.1.1.1,
“Preparing Disk Space” on page 84. The separate file system for the DFS cache
has to be mounted before you begin. If you want to choose another cache size
than 10MB (default), you should call SMIT. Otherwise type the following

command, you will not need cell_admin’s password:

#mkdfs dfs_cl

Using and Administering DCE

Configuring DFS Client Machine (dfs_cl)...

dfsd: start sweeping disk cache files

dfsd: A1 DFS daemons started.

DFS Client Machine (dfs_c1) configured successfully

Current state of DFS configuration:
dfs_cl COMPLETE DFS Client Machine

Before being able to access the /: directory, you will have to wait some time.
Then try this command:

#cd /:

You might experience the following error message
/bin/ksh: /:: does not exist

You will have to wait a moment and try again. You can try the following
command to see if the fileset(s) are available:

#fts 1sfldb

root.dfs
readWrite ID 0,,1 valid
readOnly Ib 0,,2 invalid
backup ID 0,,3 invalid
number of sites: 1
server flags aggr siteAge principal owner
evl RW 1fs.root 0:00:00 hosts/evl <nil>
usrbin
readWrite ID 0,,4 valid
readOnly ID 0,,5 invalid
backup ID 0,,6 invalid
number of sites: 1
server flags aggr siteAge principal owner
evl RW usrbinlv 0:00:00 hosts/evl <nil>

Total FLDB entries that were successfully enumerated: 2 (0 failed; 0
wrong aggr type)

If this message is displayed, it means that everything is alright.

4.2.3 Replicating DFS Server

Before reading this section, we recommend you read the discussion about DFS
replication in 5.2, “DFS Replication” on page 224

Why do we need to replicate a fileset?

Which filesets to replicate?
More examples on how to set up DFS replication can be found in the scenario
configuration instructions in chapter Chapter 3, “Implementing DCE Cells” on

page 43. There we replicate the filesets before we create a mount point to
prevent anyone from obtaining unwanted write access

In this section we describe how to replicate a fileset which had been created
before it was decided to replicate it. This task is based on Figure 18 on

Chapter 4. Administering DCE Cells 107

page 48. Therefore, we assume the machine evl1 is housing the read-write
root.dfs fileset.

However, there is not a right or a wrong way of setting up replication. You can
configure the whole fileset tree with read-write filesets and regular mount points,
populate the filesets, and then decide some time later on what to replicate. Or
you can create the read-only replicas immediately after creating the read-write
fileset, and then create the mount point(s), if you already know that you want to
replicate the fileset.

4.2.3.1 Setting Up Replication
Before starting a fileset replication, we must have previously replicated the
root.dfs fileset on the same machine that physically houses this root.dfs fileset.

A _ 1w _ root.dfs
1 \ fileset
B root.dfs.readonly
II : fileset
|
- \
Jusrbin
D \ EV4
Evl usrbin
bin local
usrbin fileset
bin local
A =Read—write mount point
B = Regular mount point usrbin.readonly
C = Read—write mount point fileset
D =Regular mount point

Figure 25. DFS Replication Fileset

In Figure 25:

/:l.rw is a read-write mount point for the root.dfs fileset. The directory is
physically housed on evl.

/: is a regular mount point or read-only directory for the DFS root directory.
This directory is housed on evl.

/:l.usrbin is a read-write mount point for the usrbin fileset, which is physically
housed on evl. This pathname accesses the read-write fileset. So does the
pathname /:/.rw/usrbin. We want to replicate this source fileset on ev4.

[:lusrbin is a read-only directory, which is physically housed on ev4. The
regular mount point accesses the read-only fileset.

The following two sections give you the steps to perform a replication. We start
by replicating the root.dfs fileset and then we can replicate another fileset.

108 Using and Administering DCE

4.2.3.2 Setting up Replication for the root.dfs Fileset
The root.dfs fileset is the fileset that houses the root directory for DFS.

We assume that root.dfs is properly configured on an LFS fileset. See 4.2.1,
“Configuring a DFS Server” on page 101 for information on how to configure the
root.dfs.

The following are the steps to replicate the root.dfs fileset. We assume we are
on evl where the root.dfs fileset is located.

1. Configure and start the replication server

#smitty dce
-> Configure DCE/DFS
-> Configure DCE/DFS Servers
-> DFS Fileset Replication Server Machine
(fastpath = mkdfsrepsrv)

DFS Fileset Replication Server Machine

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry
Fields]
* Cell ADMINISTRATOR' s account [cell_admin]

— —

Enter password for DCE account cell_admin:

Password must be changed!

Configuring DFS Replicated Fileset Server Machine (dfs_repsrv)...
DFS Replicated Fileset Server Machine (dfs_repsrv) configured
successfully

Current state of DFS configuration:
dfs_cl COMPLETE ~ DFS Client Machine
dfs_fldb COMPLETE DFS Fileset Database Machine
dfs_repsrv COMPLETE DFS Replicated Fileset Server Machine
dfs_scm COMPLETE DFS System Control Machine
dfs_srv COMPLETE ~ DFS File Server Machine

Press Enter to continue

The following command has the same effect:
#mkdfs -s /.:/hosts/evl dfs_repsrv

2. Create a read-write mount point for root.dfs:
#fts crmount /:/.rw root.dfs -rw

3. Define the replication type for root.dfs:

#fts setrepinfo -fileset root.dfs -rel

fts setrepinfo: Using default value for maxage of 2:00:00

fts setrepinfo: Using derived value for failage of 1d0:00:00
fts setrepinfo: Using default value for reclaimwait of 18:00:00

With this command, you apply the type of replication to the root.dfs fileset.
The type of replication here is release

4. Define the same machine as a replication site:

#fts addsite -fileset root.dfs -server /.:/hosts/evl -aggr 1fsroot
Added replication site /.:/hosts/evl 1fsroot for fileset root.dfs

Chapter 4. Administering DCE Cells 109

5. Create the read-only fileset and force replication from the read-write source:

#fts release -fileset root.dfs
Released fileset root.dfs successfully

6. Leave the DFS root directory, otherwise you are still connected to the
read-write fileset of the /: directory:

#cd

7. Force the local cache manager to refresh its knowledge about the fileset
configuration:

#cm checkfilesets

8. Check whether you can create a file in /: now:

#cd /:
#touch testfile
touch: 0652-046 Cannot create testfile.

9. You can create the testfile only via the read-write mount point:

#cd /:/.rw
#touch testfile
#1s

At this point, you can start to replicate other filesets. In this example we
want to replicate the usrbin fileset on ev4.

Verify the status of the fileset in the FLDB:
#fts 1sfldb

root.dfs
readWrite ID 0,,1 valid
readOnly ID 0,,3 valid
backup ID 0,,4 invalid

number of sites: 1
Release repl: maxAge=2:00:00; failAge=1d0:00:00; reclaimWait=18:00:00
server flags aggr siteAge principal owner

evl RW,RO 1fsroot 0:00:00 hosts/evl <nil>

Notice that the root.dfs readOnly version fileset is marked valid.

Note

When you plan to replicate filesets, we recommend replicating root.dfs
immediately after having created it and before you create any other filesets.
This prevents other DFS clients from getting unwanted access to the
read-write fileset of root.dfs.

If a DFS client had connected to /: before you created the root.dfs replica, it
continues to have write access. To stop read-write access, users of this DFS
client must leave that fileset and cm ckeckfilesets must be run on that node.

Each cache manager automatically refreshes its fileset information every
hour, which is the equivalent function to the cm ckeckfilesets command. So,
unwanted fileset access is usually automatically terminated after one hour,
unless users are still in this directory.

110 Using and Administering DCE

4.2.3.3 Setting Up Replication for Another Fileset

We assume we want to replicate the usrbin fileset on ev4.

For all types of replication (release or schedule), you must have previously:

Installed and configured file server machines to hold the replicas. See in
4.2.1, “Configuring a DFS Server” on page 101 how to configure a DFS
server.

Made sure that the replication server (repserver process) is configured and
running.

This command configures and starts the replication server:
#mkdfs -s /.:/hosts/evl -e dfs_repsrv
This command can also be accessed from SMIT as was done on evl.

#smitty dce
-> Configure DCE/DFS
-> Configure DCE/DFS Servers
-> DFS Fileset Replication Server Machine
(fastpath = mkdfsrepsrv)

We assume in this example, that evl is the system control machine. According
to Figure 25 on page 108, we assume we have a fileset called usrbin that we
want to replicate on another machine called ev4. The usrbin fileset is physical
ly housed on evi. We assume also the regular mount point of the usrbin fileset
is /:/usrbin before and after replication.

— High availability of read-only filesets

In order to get highly available read access to the fileset usrbin.ft.readonly,
all filesets above it in the fileset hierarchy need to be replicated also. In
other words, root.dfs should be replicated on ev4 to make sure /:/usrbin can
be accessed, if evl breaks.

Configuring fileset using released replication:
On the server system that has the read-write fileset you must do the following
tasks for release replication:
1. On evl, which physically houses the fileset:
a. Set the replication parameters for release replication:
#fts setrepinfo -fileset usrbin.ft -rel
b. Define the same machine as a replication site:
#fts addsite -fileset usrbin.ft -server /.:/hosts/evl -aggr usrbin

c. Create the read-only fileset and force replication from the read-write
source:

#fts release -fileset usrbin.ft
2. On a target machine (ev4):

a. Configure this machine as a DFS server, see 4.2.1, “Configuring a DFS
Server” on page 101. Or you can call SMIT and follow the indicated path
or call SMIT with the fastpath name:

Chapter 4. Administering DCE Cells 111

#smitty dce
-> Configure DCE/DFS
-> Configure DCE/DFS Servers
-> DFS File Server Machine
(fastpath = mkdfssrv)

DFS File Server Machine

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
Additional GROUP to administer filesets on this machine[]
Load LFS kernel extension? [yes] +
DFS System CONTROL machine to get [evl]
administration Tists from
FREQUENCY to update administration 1ists (in seconds) []

LOG file for administration list updates 0
* CELL name [/.../itsc.austin.ibm.com]
* SECURITY Server [evil]
CDS Server (If in a separate network) [1
* Cell ADMINISTRATOR' s account [cell_admin]
* LAN PROFILE [/.:/1an-profile]
A N— —

This command has the same effect:
#mkdfs -s /.:/hosts/evl -e dfs_srv
b. Configure this machine as a replication server:
This command configures and starts the replication server:
#mkdfs -s /.:/hosts/evl dfs_repsrv
c. Create an aggregate large enough to house the fileset:

Suppose the aggregate usrbin has five blocks of 4AMB. We have to
provide at least that same size on the target machine.

Create a logical volume as large as on evl
#mklv -t 1fs -y usrbin rootvg 5
d. Create an aggregate on /dev/usrbin:
#newaggr -aggreg /dev/usrbin -bl 8192 -fr 1024 -overwrite
e. Export the aggregate:
#mkdfs1fs -d /dev/usrbin -n usrbin
f. Define the new replication site:
#fts addsite -fileset usrbin.ft -server /.:/hosts/ev4 -aggr usrbin

g. Create the read-only fileset and force replication from the read-write
source:

#fts release -fileset usrbin.ft
Released fileset usrbin.ft successfully

Since the /:/usrbin directory with the regular mount point existed before,
we need not force an update of the /: parent directory at this point.

h. Leave the /:/usrbin directory which might still be connected to the
read-write fileset, if you had accessed it from ev4 before you created the
first replica for usrbin.ft.

cd /:

i. Force the local cache manager to read the new fileset information:

112 Using and Administering DCE

#cm checkfilesets

. Check whether you can create a file in /:/usrbin now:

#cd /:/usrbin
#touch testfile
touch: 0652-046 Cannot create testfile.

You are not able to create files in /:/usrbin because this path accesses
the read-only fileset. You can access the read-write fileset via
/:l.rw/usrbin or you can create a read-write mount point, /:/.usrbin, if you
do not plan to keep /:/.rw available for daily use.

To create the read-write mount point issue:

fts crmount /:/.rw/.usrbin usrbin.ft -rw

. Update the read-only copy of root.dfs to make the /:/.usrbin directory

available:
#fts rel root.dfs

. Force the local cache manager to read the new fileset information:

#cm checkfilesets

Now you can access the read-write fileset and create a file.

Configuring fileset using scheduled replication:

1. On evl, which physically houses the fileset:

a.

Set the replication parameters for scheduled replication:
#fts setrepinfo -fileset usrbin.ft -sched

You do not need to use the command fts addsite on this machine, but
you need to use it on the target machine. You may use it, however, if
you want to create a read-only copy on this primary machine.

2. On a target machine (ev4):

These are the steps to be done on each target machine:

a.

Configure this machine as a DFS server as you did above for release
replication:

#mkdfs -s /.:/hosts/evl -e dfs_srv

. Configure this machine as a replication server:

This command configures and starts the replication server:

#mkdfs -s /.:/hosts/evl dfs_repsrv

. Create an aggregate large enough to house the fileset:

Assume the aggregate usrbin has five blocks of 4MB. Create a logical
volume as large as on evl:

#mklv -t 1fs -y usrbin rootvg 5

. Create an aggregate on /dev/usrbin:

#newaggr -aggreg /dev/usrbin -bl 8192 -fr 1024 -overwrite

. Export the aggregate:

#mkdfs1fs -d /dev/usrbin -n usrbin
Define the new replication site:

#fts addsite -fileset usrbin.ft -server /.:/hosts/ev4 -aggr usrbin

Chapter 4. Administering DCE Cells 113

114

g. Create the read-only fileset and force replication from the read-write
source:

#fts update -fileset usrbin.ft -all
fts update: Repserver on evl requested to update fileset 0,,5
fts update: Repserver on ev4 requested to update fileset 0,,5

At this point the fileset is replicated.

Since the /:/usrbin directory with the regular mount point existed before,
we need not force an update of the /: parent directory at this point.

h. Leave the /:/usrbin directory which might still be connected to the
read-write fileset, if you had accessed it from ev4 before you created the
first replica for usrbin.ft.

cd /:

i. Force the local cache manager to read the new fileset information:
#cm checkfilesets

j- Check whether you can create a file in /:/usrbin now:

#cd /:/usrbin
#touch testfile
touch: 0652-046 Cannot create testfile.

You are not able to create files in /:/usrbin because this path accesses
the read-only fileset. You can access the read-write fileset via
/:l.rw/usrbin or you can create a read-write mount point, /:/.usrbin, if you
do not plan to keep /:/.rw available for daily use.

To create the read-write mount point issue:
fts crmount /:/.rw/.usrbin usrbin.ft -rw

k. Update the read-only copy of root.dfs to make the /:/.usrbin directory
available:

#fts rel root.dfs
I. Force the local cache manager to read the new fileset information:
#cm checkfilesets

Now you can access the read-write fileset and create a file.

4.2.3.4 Check Your Work for Accuracy

You can use these commands on every DFS machine.

Consult the FLDB:
#fts 1sfldb

root.dfs
readWrite ID 0,,1 valid
readOnly ID 0,,2 valid
backup ID 0,,3 invalid
number of sites: 1
Release repl: maxAge=2:00:00; failAge=1d0:00:00; reclaimWait=18:00:00
server flags aggr siteAge principal owner

evl RW,RO 1fsroot 0:00:00 hosts/evl <nil>
usrbin.ft

readWrite ID 0,,4 valid
readOnly 1D 0,,5 valid

Using and Administering DCE

backup ID 0,,6 invalid
number of sites: 2 <<--- Here note that number is two!!
Release repl: maxAge=2:00:00; failAge=1d0:00:00; reclaimWait=18:00:00

server flags aggr siteAge principal owner
evl RW, RO usrbin 0:00:00 hosts/evl <nil>
evd RO usrbin 0:00:00 hosts/ev4 <nil>

The readOnly fileset is now marked valid.
Access to DFS filespace

#dce_login cell_admin mypasswd

#cd /:/usrbin

4.2.4 Defining Home Directories in DFS

Defining the home directory for DCE users is not trivial, because at the time the
user logs in to AlX, they have no network credentials yet, in other words, they
are not DCE authenticated yet. So, they do not have the necessary access
permissions to enter into their home directory.

Let's assume that user joe is to have a home directory in DFS, namely
/:/dfshome/joe. The first difficulty is to define this home directory in the
/etc/passwd file. Since the colon (:) is used as a field separator, we must enter
the global directory name:

cat /etc/passwd | grep joe
joe:1:302:1::/.../itsc.austin.ibm.com/fs/dfshome/joe:/bin/ksh

If a user logs in to AIX and does not have a valid home directory, their home
directory is set to /usr/guest or /home/guest. However, they do not have
sufficient permission there to actually use that directory.

We can use the .profile in /home/guest to take the DCE users through to a DCE
login. At the same time we can reassign the home directory:

$ pg /home/guest/.profile

export EDITOR=vi

Extract the Home directory name:

export HOME="cat /etc/passwd | grep $USER | cut -f6 -d:"
export ENV=/$HOME/.kshrc

DCE Login

echo "\nLogin to DCE --> \c"

dce_Tlogin $USER

Set permission such that all users can run the .profile:

$ chmod o+rx .profile

User joe gets immediately to the dce_login command, when he logs in to AIX.
Since a new Korn shell is started after a successful dce_login, we can use the
.kshrc startup file to issue a cd command, so that joe's current directory is his
DFS home directory.

cat /.../itsc.austin.ibm.com/fs/dfshome/joe/.kshrc
cd

If user joe now logs in, he has to specify his password twice, once for AIX and

once for DCE. If that operation is successful, he is in DCE and his home
directory in DFS is his current directory:

Chapter 4. Administering DCE Cells 115

IBM AIX Version 3 for RISC System/6000

(C) Copyrights by IBM and by others 1982, 1991.

login: joe

Enter password for joe: secret

Standard UNIX authentication successful.
khhkkkkkkhkhhhhhhkkkhkkhkhhhhhhkhkhkhkhhhhhhkhkhkhkhhhhhhkhkhkhkhhhhhkhkhkhkhkhhhhhkhkhkhkhkhhhhhkhkhkhkhkhkhhhhkkkkx

* Welcome to IBM AIX Version 3.2! *

khhkkkkkkhkhhhhhhkkkhkhkhhhhhhkhkkhkhkhhhhhhkhkhkhkhhhhhkhkhkhkhkhhhhhkhkhkhkhkhhhhhkhkhkhkhkhhhhhkhkhkhkhkhkhhhhkkkkx

1 unsuccessful Togin attempt since last Togin

Last unsuccessful login: Thu Sep 22 13:23:49 CDT 1994 on pts/6

Last Togin: Thu Sep 22 13:16:01 CDT 1994 on hft/0

3004-614 Unable to change directory to "/.../itsc.austin.ibm.com/fs/dfshome/joe".
You are in "/home/guest” instead.

Login to DCE --> Enter Password: secret

$ pwd
/.../itsc.austin.ibm.com/fs/dfshome/joe
$

Please note that this procedure is only necessary, if you are using the standard
dce _Togin command.

If you use Single Login/6000 (see 5.4, “Single Login/6000” on page 235) and our
user management tool as described in 5.5, “User (and ACL) Management” on
page 242, defining a home directory in DFS is much easier.

The DFS home directory is defined in the DCE registry account

Use our user management tool to define the DCE user and account

It can be defined as /:/dfshome/joe

Both the registry and our user management tools support the notation with
the colon (3)

Single Login/6000 uses the values in the DCE registry account in contrast to
dce_Togin, which ignores them and uses the home directory and initial
program of the local /etc/passwd file

4.3 Changing Cell Configurations

Once defined, cells cannot easily be reconfigured. Changes of IP addresses, host
names, server locations or even splitting and joining cells are realistic
challenges for administrators. Machines can be added and servers can be
replicated or moved as the customer's business is grows. Faster networks can
be added and slower networks can be removed. In this section we describe the
following tasks:

Splitting a cell

Joining cells

Changing IP addresses

Moving Services

Changing a replica into a master service

Many of these tasks are performed with tools we have developed or modified.
The tools we use are all on the diskette that comes with this document.

116 Using and Administering DCE

4.3.1 Splitting Cells

Splitting an existing cell means defining some machines into another cell and
moving some services, data and users to the new cell.

—— Please Note

The steps outlined here are a summary of ideas based on our experiences in
this project and were not tested due to lack of time.

However, we wanted to include them to give you ideas on how to tackle this
important issue.

Splitting a cell is a complex undertaking and the necessary steps depend on
what is installed in the cell. DCE applications cannot be discussed, because
every application can require different steps:

If services are duplicated in the new cell, it might be possible to install them
in the new cell without any difficulties or conflicts with the original cell.

If services administer common data that needs to be split, you might be able
to use application specific tools. Or, in the worst case, you have to delete
and redefine part of the data.

DCE core services and DFS servers with their databases have to be rebuilt in the
new cell. The databases cannot be moved over cell boundaries nor can they be
backed up and restored in the new cell. So we actually need to extract all the
necessary information from the databases in the old cell and reconfigure it in the
new cell.

The biggest effort in splitting a cell is probably the migration of users with their
files and ACL definitions. We have created a user management tool that is
designed to support moving users and their associated data. For more
information which is important for migration of users and files see the following
sections:

5.5, “User (and ACL) Management” on page 242
4.7.3, “Migrating NFS Files to DCE/DFS” on page 208
2.4, “Planning the User Namespace” on page 33
The following list describes a general procedure to move users from one cell to

a new cell. The user management tools would have to be extended to also
support groups and maybe Single Login/6000.

1. Create a list of user names to be moved.
2. Create a list of groups to be moved or copied.

3. If you are not sure whether the UDFs (user definition files) of these users are
up to date, run get_info_users.

This step extracts the current registry definitions and all ACLs for each user
in the list and updates the UDFs.

4. Run get_info_groups for all groups that need to be created in the new cell.
5. Suspend the users with the susp_users command.

6. Delete the users with the del_users command.

Chapter 4. Administering DCE Cells 117

118

10.
11.
12.

13.

14.
15.

16.
17.

18.

19.

Before the user is deleted from all groups and from the DCE registry, all
ACLs for this user are deleted. Then the UDF is moved to the cemetery
directory.

Delete the groups which will not be present in the old cell anymore with the
del_groups command.

This step deletes the groups from the security registry and moves their GDFs
to the cemetery directory, provided that they do not have any members left.

. Backup the DFS files with AIX commands such as tar.

The ACL information is intentionally destroyed by this step. The information
to recreate it is in the deleted UDFs/GDFs. The UDFs/GDFs can be edited to
remove entries not desired in the new cell, if necessary. This can be done
with shell scripts that make global changes in multiple UDFs/GDFs.

If ACLs were conserved by using DFS dump and restore, it would be a
tedious job to adjust all ACLs to the new cell name. First we would have to
define the users with the same UUID in the new cell. Then we would have to
edit each ACL to change the cell name and we might have to delete user
and group entries that belong to nameless UUIDs, because their users or
groups do not exist in the new cell. Furthermore, it might also be necessary
to change the cell name in ACL entries for foreign users or groups.

Delete the machines in the old cell with rmdce all.

It might be necessary to move services away from those machines first. See
4.3.4, “Moving Services Within the Cell” on page 129 on how to achieve this.

Install the DCE and DFS servers in the new cell.
Move the UDFs to the new cell.

Copy the GDFs of groups which will be in both cells and move them together
with the GDFs of the deleted groups to the new cell.

Inspect the UDFs/GDFs and make changes, if necessary.

Since we are going to a new cell, the UIDs will remain unique and need no
change.

Add the groups with add_groups.
Add the users with add_users.

The add_users procedure only adds DCE users. If you are not using Single
Login/6000, you would have to create AlX user accounts as well.

Run rgy_enable_users to enable the DCE accounts.
Create the necessary fileset hierarchy in DFS.

If you do not assign a fileset to each user, you should at least create their
home directory now, such that the initial creation ACLs can be assignhed
before the files are restored.

Set the initial object and container creation ACLs.

Manually for filesets which are not covered in the UDFs

Run dfs_enable users to apply all ACLs to the users’' home directories
Restore the DFS files.

Do this as cell_admin and use tar -xp to preserve file ownership and
permission bits.

Using and Administering DCE

Be aware that when you list the files, the owner seems to be non-existent
from an AIX point of view. If you are using Single Login/6000, then you did
not define local AIX accounts for the users and file owners are shown as
UIDs and GIDs.

20. Once all DFS and CDS objects are present, run acl_enable_users to apply all
ACLs the users might have in those objects.

21. Run update_groups to apply all group ACLs.

4.3.2 Joining Cells

For a general procedure on how to join cells or move parts of an existing cell to
another cell, see 4.3.1, “Splitting Cells” on page 117. The procedure is basically
the same, we cannot directly move anything across a cell boundary, we must
extract the necessary information, delete it at the old place and reconfigure it in
the new cell.

If you are in an environment, which you had originally designed for unique UIDs
and principal names across multiple cells as discussed in 2.4, “Planning the
User Namespace” on page 33, you can go ahead and follow the procedure
outlined for splitting a cell.

Otherwise, you must inspect all UDFs/GDFs you are going to migrate to another
cell. To do this run get_all_info also in the target cell and check the two sets of
UDFs/GDFs for conflicting UIDs/GIDs and/or user/group names.

Some groups might be the same in both cells. To merge these you must make
sure they have the same GID in both cells. Otherwise you must run a global
change in one of the cells. For groups which will be new in the target cell you
must check for GID conflicts and possibly run a global change, too. Follow the
same steps as outlined below for the users.

For all UDFs of the old cell that would cause a conflict in the new cell you must
do the following in the old cell after you have deleted the users:
1. Find a new user name and/or UID

2. Recursively change their DFS file ownerships to the new UID

w

. Find file or directory names that contain their old user name and change
them to the new name

4. Change name and contents of the UDF to reflect the new name, UID, home
directory and so on

Once this is done in the old cell, the procedure is the same as for splitting a cell.
You can then continue with the step that backs up the DFS files.

4.3.3 Changing IP Addresses

Several reasons might make it necessary to change the IP address of a
workstation or server. For instance, a machine is to be relocated to another
floor or a whole network is to get a new IP address. If this happens, we need to
change the TCP/IP definitions for the involved machines such as LAN interface
configuration, name server entry, and routing. As a summary of the
considerations presented in the following section, 4.3.3.1, “RPC Binding
Information or CDS Towers” on page 120, we can say for DCE we need to
change every occurrence of an IP address in CDS and in all clients’ caches.

Chapter 4. Administering DCE Cells 119

120

To support the necessary reconfiguration steps in DCE we have created the
following shell scripts:

cleanif Searches for IP address entries in the namespace
cleanup_ip Changes the evaluated entries
renew_dir_entries Updates Tower information in affected CDS directories

The following shell scripts are also needed to refresh the local CDS cache on
each client machine. They are described in 4.4.5, “Managing Caches on Client
Machines” on page 156:

cleanup_cache Refreshes CDS and credential caches; requires DCE restart
cleanup_cds _cache Refreshes CDS clerk cache only without DCE restart
create _cds entry Enters knowledge of a CDS server into the CDS clerk cache

The following subsections will describe:

Binding handles overview

Description of each shell script

Generalized procedure on how an IP address change is performed with the
help of our scripts

Qur experiences

4.3.3.1 RPC Binding Information or CDS Towers

The difference between, for example, reading a local file on a single machine
and performing the same read on a remote file in DCE is like the difference
between reading information from a phone book yourself and dialing an operator
for the same information. The remote operation requires the addition of another
active entity that can be requested to perform it for you. Associated with every
remote object (for instance a data file) available on a network is a remote server
to manage that object and make it available. The user may not be aware of that
server, but it is there.

Clients call remote procedures. They need to find a service on a remote server
node. CDS is the operator that tells you which number to dial to get to that
server node. The number, also called binding handle, contains an IP address
and is stored in the directory service.

The DCE documentation often speaks of binding to an object. In reality, clients
can bind only to servers, which may then be requested to perform operations on
objects that are under their management. A binding handle consists of the
server node IP address, a protocol sequence such as UDP or TCP, an interface
UUID to select the server process, and object UUIDs to specify certain objects on
which an action is to be performed. The following example shows RPC binding
information as it is stored in CDS for access to the

FLDB server:
rpccp show entry /.:/hosts/donald/fl1server
objects:
00lalf6c-4816-1e0a-9950-08005a01befd
binding information:
<interface id> 003fd39c-7feb-1bbc-bebe-02608c2ef4d2,1.0
<string binding> ncadg_ip_udp:9.13.113.156[]
<string binding> ncacn_ip_tcp:9.13.113.156[]

The same entry displayed from a CDS point of view:

Using and Administering DCE

cdscp show object /.:/hosts/donald/flserver
SHOW
OBJECT /.../itsc.austin.ibm.com/hosts/donald/fl1server
AT 1994-09-09-00:09:24
RPC_ClassVersion = 0100
RPC_ObjectUUIDs = 6¢c1f1a0016480a1e€995008005a01befd
CDS_CTS = 1994-06-24-02:42:32.898697100/08-00-5a-01-be-fd
CDS_UTS = 1994-06-24-02:42:34.844623100/08-00-5a-01-be-fd
CDS_Class = RPC_Entry
CDS_ClassVersion = 1.0
CDS_Towers = :
Tower = ncacn_ip tcp:9.13.113.156[]
CDS_Towers = :
Tower = ncadg_ip udp:9.13.113.156[]

The string bindings as seen with the rpccp command are stored as CDS
attributes called CDS_Towers. We will use the term Towers hereafter.

Other entries such as the one for /.:/subsys/dce/sec/master can have multiple
interfaces and object UUIDs managed all by one server process. To build
binding handles from this CDS entry, all object UUIDs, interface UUIDs, and
string bindings are combined. So, in the above example, we would get two
binding handles, one for UDP and one for TCP.

The following figure shows an example of the tree structured CDS namespace.
To make it more confusing, CDS calls its leaf entries objects.

<

Lan—Profile

| evl_ch |
@sts

........
cds—server |
dts—entitg |

Figure 26. Extract of a CDS Namespace

Many services mediated by CDS can be running on the same server node. That
means that multiple CDS objects can contain one specific IP address multiple
times.

Chapter 4. Administering DCE Cells 121

122

Once a client has obtained the dial number for a service, they memorize (cache)
it, so they do not have to call the operator again for the same information. If the
number changes, we have to tell that to each client which memorized it.

We need to change every occurrence of an IP address in CDS and on all clients’
caches.

4.3.3.2 The cleanif Procedure

We created the cleanif shell script, which finds all the objects in the namespace
containing a specific IP address. It generates rpccp commands to change the
binding information pertaining to that IP address for all these CDS objects. The
generated commands are written into a file.

#cleanif
Usage: cleanif -i <ipaddr> -n <newipaddr> -f <output file> [-s] [-h]

-1 <ipaddr> ipaddr is the IP address to be removed
-n <newipaddr> new IP address to replace iaddr
-f <output file> generated rpccp input file
-s save temp files (for debugging cleanif)
-h help

Structure of cleanif

E lists all objects, clearinghouses, and
directories of the namespace

writes the object and binding information for a
specific IP address to a temporary file

generates the script /tmp/renew_dir_entries which
must be used after DCE is restarted to assign the
new IP address to the Tower attributes of

all directories in the clearinghouses

walks through the namespace and generates a file with
unexport and export commands for all CDS objects
containing the IP address to be changed

get_bindings

Figure 27. Workflow Description of the cleanif Procedure

The file that is generated contains unexport and export subcommands for the
rpccp command. The unexport commands affect CDS entries. They remove
interfaces which contain binding handles with that IP address. Since unexport
can only remove an entire interface, which might also contain other IP
addresses, we must re-export the interface with the bindings that are still valid
and with the ones that have a new IP address. This is what the generated export
commands do. The following is an extract of a generated file:

unexport -i 003fd39c-7feb-1bbc-bebe-02608c2ef4d2,1.0 \
-0 00013376-feed-1eb0-bb6cc-10005aa8¢cff8 /.:/hosts/ev2/bosserver

export -b ncadg_ip udp:9.3.1.123[] \
-1 003fd39c-7feb-1bbc-bebe-02608c2ef4d2,1.0 \
-0 00013376-feed-1eb0-b6cc-10005aa8¢cff8 /.:/hosts/ev2/bosserver

export -b ncacn_ip tcp:9.3.1.123[] \
-1 003fd39c-7feb-1bbc-bebe-02608c2ef4d2,1.0 \
-0 00013376-feed-1eb0-bbcc-10005aa8¢cff8 /.:/hosts/ev2/bosserver

Using and Administering DCE

unexport -i 4ea31de8-9a94-11c9-bb60-08002b0f79aa,3.0 \
-0 dc8c6fc0-6143-11ca-b4b9-08002b1bbaf5 /.:/hosts/ev2/cds-clerk

export -b ncadg_ip udp:9.3.1.123[] \
-1 4ea31de8-9a94-11c9-bb60-08002b0f79aa,3.0 \
-0 dc8c6fc0-6143-11ca-b4b9-08002b1bbaf5 /.:/hosts/ev2/cds-clerk

export -b ncacn ip tcp:9.3.1.123[] \
-1 4ea31de8-9a94-11c9-bb60-08002b0f79aa,3.0 \
-0 dc8c6fc0-6143-11ca-b4b9-08002b1bbaf5 /.:/hosts/ev2/cds-clerk

At the same time it creates another shell script called /tmp/renew_dir_entries.
This procedure is explained in 4.3.3.4, “renew_dir_entries Procedure” and will be
used only if CDS servers change their address.

This script was tested with DCE core services and DFS. It may not work for
certain DCE applications. Therefore, use it with care and consider testing it
before using it within a productive cell. Check the contents of the generated
files. When you use it with DCE applications, be sure to stop all applications
before you run cleanif. In this way CDS will be cleaned from binding
information which applications might export and unexport by themselves.

The cleanif procedure can also be used to search the entire CDS namespace for
binding information containing a specific IP address:

cleanif -i 9.3.1.120 -n 1.1.1.1 -f /tmp/out.cds

Notice the comments that are displayed. As soon as it says used for a CDS
object or directory, you know that this object contains that IP address. However,
do not run cleanup_ip, which would change all occurrences of 9.3.1.120 into
1.1.1.1 in CDS!

4.3.3.3 cleanup_ip Procedure

The script cleanup_ip takes the rpccp input file previously generated by cleanif
and executes all the commands in it. Again, we recommend reviewing this file
carefully before using it. Then call it as follows:

cleanup_ip -f <file_generated by cleanif>

4.3.3.4 renew_dir_entries Procedure

If the node to be changed is a CDS server, then its IP address is stored in the
CDS_Tower attribute of all directories, which have an occurrence (replica) on
that server. You can check them with cdscp show dir <dir_name>. The Tower is
used to bind to the CDS server that hosts a certain directory. If the server's
address changes, the Tower information in all directories of that server has to be
changed.

renew_dir_entries is a shell script generated by cleanif. It has commands that
rebuild each directory’s replica set, which forces an update of the Tower
information for each directory. The following is an example of what
renew_dir_entries contains:

#1/bin/ksh
/bin/klist | grep Principal | grep cell admin > /dev/null 2>&1
if [0 -ne 0] ; then
echo "Must be cell_admin, please dce_login.”
exit 1
fi

Chapter 4. Administering DCE Cells 123

124

echo "\n !!! Execution may take a long time !!! \n"

cdscp set dir /.:/hosts to new epoch master /.../itsc.austin.ibm.com/evl ch
readonly /.../itsc.austin.ibm.com/ev4 ch

cdscp set dir /.:/subsys to new epoch master /.../itsc.austin.ibm.com/evl ch

Check the file before you execute it. In order to succeed, the whole replica set
has to be specified for each directory to set a new epoch master.

4.3.3.5 Generalized Procedure to Change an IP Address

Figure 28 on page 125 contains a workflow description of all necessary steps to
change an IP address. We have tested this procedure in many different
combinations of DCE and DFS server configurations. All steps need to be
performed on the system of which the IP address needs to be changed. Some
additional steps need to be executed on other systems as indicated, depending
on what type of DCE/DFS server has been changed.

Using and Administering DCE

Perform on the system which fmmmmemeeememeeemem e -

needs to be changed Two files produced by cleanif:

'
'
, (correct manually, if necessary)
|
|

| Stop DCE applications |

Input file for cleanup_ip
pcep command file

/tmp/renew_dir_entries

if, ok ¢

Change the server IP address in the

#fts edserv <old—ip> —ch <new—p>| g1 bR Needs to be done for any

#dfs.clzlean type of DFS server.
ol cleanup_ip changes the IP address in the bindings of all CDS
canup_ip objects by unexporting and re—exporting the interfaces
If the system is a security server, the file
Change pe_site file letc/doe/security/pe_site must be changed on all sys-

tems in the cell so that sec_clientd can bind to secd

If it is a CDS server, the IP address in the
| Change cds_config file | fetc/dee/cds_config file on this system must be
| changed

Change the IP address on the network’s nameserver or

| Change II) definitions | in /etc/hosts of all systems and check the routing

[Change IP address | chdev to new IP address
fcleanup_cache Stops DCE, then removes all local cache files, the RPC endpoint map and
Reboot the system the system’s socket entries in /var/dce/rpc/socket; then reboot the system

On the FLDB sync site: On other DFS Servers:
f#icleanup_cache | #bos restart repserver |
On all systema: On all systems: Reboot the system
Cnange pe_site file | | #cleanup_cds_cache | On all DFS clients:
On all DFS clients: o
m getpreferences
#rpcep show entry /. :/hosts/<host> fiom setpreferences
#cm checkfilesets #em checkfilesets

Figure 28. Generalized Workflow Description to Change an IP Address

4.3.3.6 Experiences

In order to change an IP address within all namespace entries, it is absolutely
necessary that cell_admin has access to all these entries. If this is not the case,
a full change of an IP address may not be guaranteed. However, in case of an
unauthorized access to a directory, object, or clearinghouse cleanif will alert
you and this information can be logged.

Remember that you must release a fileset and run cm checkfilesets on a DFS
client to see any changes made to the read-write filesets. This has actually

Chapter 4. Administering DCE Cells 125

nothing to do with an IP address change, but it may be the reason for not seeing
changes when you test your DFS after an IP address change.

Depending on what type of server is running on the system of which the IP
address is changed, some or all of the following additional steps are necessary
as outlined also in Figure 28 on page 125:

DCE client only:

Stop all applications first. Then follow the procedure, it should work. Only a few
changes are necessary in CDS and no other machines are affected. So, no cash
refreshes are necessary. Rebooting the system is necessary if a DFS client runs
on that system. Otherwise restarting DCE might be sufficient.

Another option is to simply unconfigure DFS and DCE, change the IP address,
adjust the TCP/IP definitions and reinstall the client. If split configuration is
used, the central administrator part has to be performed as well.

DCE security server:

The /etc/dcel/security/pe_site file contains binding information to the security
server. If you change an IP address on a security server, this file must be
changed on all systems in the cell. If CDS is running normally, you can run
chpesite to update the pe_site file. Otherwise, for example, if you have changed
your IP address from 9.3.1.68 to 9.3.1.120:

/.../itsc.austin.ibm.com 006cdlee-148c-1e06-8e09-10005a4f15da@ncacn_ip tcp:9.3.1.68[]
/.../itsc.austin.ibm.com 006cdlee-148c-1e06-8e09-10005a4f15da@ncadg ip udp:9.3.1.68[]

Change the above entries with a text editor to:

/.../itsc.austin.ibm.com 006cdlee-148c-1e06-8e09-10005a4f15da@ncacn_ip tcp:9.3.1.120[]
/.../itsc.austin.ibm.com 006cdlee-148c-1e06-8e09-10005a4f15da@ncadg_ip_udp:9.3.1.120[]

Applications might have security server bindings cached. In particular, long
running applications which automatically renew their ticket tend to cache a
binding handle. For instance sec_clientd is one. It keeps the machine principal
valid. When sec_clientd is stopped and restarted with the following commands,
it destroys all existing credentials:

dce.clean sec_clientd
sec_clientd -purge

One of the next commands should also be executed to refresh the clerk cache
entry for the security server, depending on whether it was the master or a
replica server:

rpccp show entry /.:/subsys/dce/sec/master -u
rpccp show entry /.:/subsys/dce/sec/rep<number> -u

If you do not know which other applications behave like sec_clientd, stop all
applications and run cleanup_cache to destroy credentials and cache entries; see
4.4.5, “Managing Caches on Client Machines” on page 156.

CDS server:
Follow the procedure. We have tested it in a cell with two CDS servers. The

renew_dir_entries procedure recognizes the entire replica set of all directories, if
none of the replicas are excluded (see 4.3.3.4, “renew_dir_entries Procedure” on

126 Using and Administering DCE

page 123). However, check the contents of renew_dir_entries, before you
execute it, to be sure the replica sets are correctly generated.

Do not forget to change the IP address in the file /etc/dce/cds_config.

The CDS clerk caches should be refreshed, if the client systems immediately
need the updated information. After approximately 8 to 12 hours, the entries
would be invalidated and the clerk would obtain updated information from the
CDS server, if the caches are not refreshed.

DFS FLDB:

The IP address of each FLDB server is stored in the FLDB. Change this address
and regularly stop DFS on the old address to allow for correct DFS token
management before you run cleanup_ip.

Also check which of the FLDB servers is the sync site:

udebug /.:/fs /.:/hosts/ev2 -long

Host 9.3.1.120, his time is -1

Vote: Last yes vote for 9.3.1.120 at -12 (sync site); Last vote started at -12
Local db version is 783799213.1

I am sync site until 78 (3 servers)

Recovery state 1f

Sync site's db version is 783799213.1

0 locked pages, 0 of them for write

This server last became sync site at -5981

Server 9.3.1.123: (db 783799049.1)
last vote rcvd at -11, last beacon sent at -11, Tast vote was yes
dbcurrent=1, up=1 beaconSince=1

Server 193.1.10.4: (db 0.0)
last vote rcvd at -11, last beacon sent at -11, Tast vote was yes
dbcurrent=1, up=1 beaconSince=1

Run his command for each FLDB server defined in the /.:/fs RPC group. If
another FLDB server is the sync site, you must run cleanup_cache and reboot that
server as well. Otherwise it keeps the old IP address in the FLDB and ubik tries
to synchronize the FLDB on the old address. Just restarting the flserver on the
sync site was not sufficient when we tested. It is sufficient to reboot the sync
site server only. Our recommendation, however, is to clean up and reboot all
FLDB server systems in the cell, because otherwise ubik might take a long time
to synchronize all servers and eliminate the stale address everywhere.

Then check whether the sync site FLDB stores the correct IP address of the
other FLDB servers with the following command:

udebug /.:/fs /.:/hosts/<sync_site fldb> -long

The DFS client systems use the CDS entry /.:/hosts/<fldb-host>/self to get to an
FLDB server. To avoid possible timeouts on the DFS clients, you may want to
refresh this CDS entry on all DFS clients:

rpccp show entry /.:/hosts/<fldb-host>/self -u
If more than one FLDB server is running, the DFS clients would get to an FLDB

without the above command. However, they may experience a 30 second
timeout, when the old binding information is tried.

Chapter 4. Administering DCE Cells 127

128

Run the cm check command to refresh the DFS clients’ binding information to the
FLDB and the DFS file servers.

DFS file server:

If a DFS file server is to be changed, its IP address in the FLDB has to be
changed first. Then after all steps have been performed on this server and it is
up and running again, all repservers for which the changed file server contains
the master filesets need to be restarted:

bos restart /.:/hosts/<repserver-name> repserver
Otherwise a release or update of the fileset would not reach the repservers. The
release command for the fileset would seem to succeed, but actually the

read-only filesets would not be updated on the systems which did not restart
their repservers.

On all DFS client systems the cache manager preferences need to be checked:

cm getp

cm getp

evd 40006
ev2 20015
9.3.1.123 20008

In the above example, ev2 was changed from 9.3.1.123 back to its original
address 9.3.1.120. The cache manager has the highest priority (lowest number)
on a stale address, where there is no longer a server. The only way to get rid of
this entry is to reboot the client system. However, we could assign a very low
priority to that address:

cm setp 9.3.1.123 60000

Run the cm check command to refresh the DFS clients’ binding information to the
FLDB and the DFS file servers.

DCE applications:

When you use this procedure with DCE applications, be sure to stop all
applications before you run cleanif. In this way CDS will be cleaned from
binding information which applications might export and unexport by themselves.
After the change, the application should be able to start and export their new
interfaces, provided that the DCE core services are running normally after the
change.

If an installation procedure for an application had defined static binding
information in CDS, these entries will be changed to the new IP address.

However, if an application stores or caches binding information internally on its
clients or peer servers, you have to somehow be able to refresh this application
cache on each system running a client or another server of this application. This
is very much application dependent.

— Caution

Back up all your databases before you change the IP address of a server and
be ready to redefine the cell, just in case.

Using and Administering DCE

4.3.4 Moving Services Within the Cell

Client/server application frameworks are supposed to be easily scalable. When
demand for a service increases, a new server can be added, if the application is
designed to allow for this. In such a dynamic environment, requirements for
services can change. We must be able to move the following services from one
machine to another, possibly without interrupting their availability:

DCE applications
DFS services
CDS resources

Security server

4.3.4.1 DCE Applications

The effort it takes to move a DCE application depends on how the application is
designed. An application server may provide CPU access for parallel processing
of numeric intensive tasks. This case is easy to handle. You can just add and
delete servers.

It is more difficult to handle redundant services when they access data. You
may have one defined master server and allow replicas which have a read-only
copy of the data. This would be the DCE security server type approach. Or you
can have multiple servers that know of each other and agree on a master among
themselves, such as the DFS FLDB.

There are many variants of the above mentioned patterns. Each application
should provide specific instructions on how to relocate their services.

There is one general rule for making applications relocatable. If an application
leaves all address lookup tasks to CDS and does not store any addresses of
peer servers locally, it is easier to relocate. It may cache information, but the
caches should be refreshable with a management command. In addition, it
should register itself in CDS and remove the interfaces upon termination.
The relocation steps would then be:

1. Stop the service; this should remove the interfaces from CDS

2. Remove local RPC mappings for that application, if the server is not going to
be rebooted; a well behaving application does that by unregistering itself
from rpcd

Backup its data(base)
Install the server in the new location

Restore the data(base)

o 0 >~ »

Start the service; this should read the database and export the interfaces to
CDS

7. Refresh the CDS cache on all client systems, if you want to prevent timeouts:

Either the entire cache with the procedures described in 4.4.5,
“Managing Caches on Client Machines” on page 156

Or force the CDS client to read the CDS object from CDS rather than
from the local cache with:

rpccp show entry <entry name> -u

Chapter 4. Administering DCE Cells 129

130

4.3.4.2 DFS Services

DFS has various machine roles which can be on the same or different machines.
We discuss them separately. For more details consult the ITSO publication The
Distributed File System (DFS) for AIX/6000.

FLDB and Backup Server:

These two machine roles work the same as far as replication and database
access is concerned. The ubik routines designate one master server and update
that database. The other servers, if there are any, become slaves and their
database is automatically updated by the ubik routines.

All we have to do is add another FLDB server with mkdfs -s <scm-host> dfs_fldb
issued on the new node and remove the old one with rmdfs dfs_fldb.

It is seldom necessary to restart client or server machines if you reconfigure a
cell's FLDB machines. As long as at least one FLDB machine remains the same
after reconfiguration, all machines can continue to access the FLDB via that
machine. Eventually, all machines will recognize the current set of FLDB
machines.

If no FLDB remains the same, a CDS clerk cache refresh for the DFS junction, an
RPC group entry, may be helpful:

rpccp show group /.:/fs -u
DFS File Server:

Read-write filesets can be moved to other machines in the same cell, whereas
read-only filesets should be removed and recreated as shown in the following
steps:

1. Install new file server machine:

mkdfs -s <scm_machine> -e dfs_srv
mkdfs -s <scm machine> dfs_repsrv

2. Create and export the necessary aggregates on the new site, for example:

mklv -t 1fs -y Tfsroot rootvg 1
newaggr /dev/1fsroot 8192 1024 -overwrite
mkdfs1fs -d /dev/1fsroot -n Tfsroot

3. Use the fts move command to move read-write filesets to the new location:
fts move root.dfs evl 1fsroot ev2 1fsroot

The fileset to be moved must not exist as a replica on the target system,
otherwise the move fails.

4. Follow the steps outlined in 4.2.3, “Replicating DFS Server” on page 107 to
create the same replica filesets on the new location as are defined at the old
location

5. Use fts rmsite to remove all replica filesets at the old location.

The replica filesets associated with read-write filesets moved away from this
server need not be removed, they are transferred with the master copy.

6. Unexport the aggregate(s) and remove the logical volume(s):

rmdfs1fs -n Tfsroot
rmlv -f T1fsroot

Using and Administering DCE

7. Remove the DFS file server at the old location rmdfs dfs_srv and reboot the
system to get rid of the kernel extension.

SCM Machine:

The System Control Machine (SCM) machine is running an upserver process
which is contacted by the upclient processes of other DFS servers in the same
administrative domain. An administrative domain is built by all DFS servers
defined to belong to a particular SCM machine. Administrative lists, which
define who is authorized to administer DFS servers, are maintained only on the
SCM. The upclient processes then contact the upserver process on the
according SCM to send down all administrative lists.

The SCM machine does not know which client machines are in its domain. The
clients know which SCM machine is theirs, because it was specified with the -s
flag of the mkdfs command.

So, what we have to do is:
1. Be sure to be root and cell_admin
2. Install a new SCM machine with mkdfs dfs_scm

3. Copy all administrative list files in directory /opt/dcelocal/var/dfs from the
old to the new SCM machine (or backup/restore the files)

4. On each SCM client, which means on all DFS servers in the same
adminstrative domain, change the entry for the upclient.scm (or upclient)
process in the BosConfig file. Issue all of the following commands on one
line each:

bos stop -s <scm_client_system> -p upclient.scm
bos delete -s <scm client _system> -p upclient.scm

bos create -s <scm client system> -p upclient.scm -type simple -cmd '/ op
t/dcelocal/bin/upclient -s <new_scm machine> -path /opt/dcelocal/var/dfs /
admin.bos /opt/dcelocal/var/dfs/admin.ft /opt/dcelocal/var/dfs/admin.f1 /o
pt/dcelocal/var/dfs/admin.bak’

5. On the old SCM site, delete the upserver process:

bos stop -s /.:/hosts/<old_scm> -p upserver
bos delete -s /.:/hosts/<old_scm> -p upserver

Then add an upclient.scm entry as you did in the previous step.
6. Check with the following command:

bos status /.:/hosts/<scm_client_system> upclient.scm -Tong
7. Delete the SCM machine on the old site:

rmdfs dfs_scm

However, if you have other DFS servers running, you will destroy
adminstrative lists with this step and it will take a while until they are
recreated by the upclient process.

Chapter 4. Administering DCE Cells 131

132

4.3.4.3 Moving CDS Resources

CDS controls a distributed database. Replication is performed on the directory
level. Each directory is a replica, one of them being the master. Master replicas
of different directories can be on different systems. Before we want to move
CDS resources we should know the structure of our namespace. Therefore we
include a short caveat to show how to analyze the namespace:

How to list directories?
Where are replicas of a directory and which one is the master?
What type of directory is in the /.:/evl_ch clearinghouse?
The commands that give answers to the above questions can be combined to
answer other questions such as: "Where are the master replicas for all
directories”?
Then we want to look at relocating different CDS resources such as:
Master directory
Clearinghouse
CDS server
After all these changes a refresh of all CDS clerk caches is useful to avoid

timeouts because a client still tries to access outdated information. The clients
become aware of the change through advertisements of the CDS servers.

—— Change or add cached server definitions

If clients are not in the same LAN as a CDS server, they do not receive any
advertisements from CDS servers because broadcasts do not go across any
IP routers. If a CDS server is moved, you must check whether any clients
need to change or add the cached server definitions.

To list, delete, or add the cached server definition on ev4, which is connected
via X.25, you use the following commands:

cdscp show cached server ev*
cdscp clear cached server ev2
cdscp define cached server evl tower ncacn_ip_tcp:9.3.1.68

When you first configure a DCE node with mkdce -c, the cached server entry
is put into the /etc/rc.dce file. When you change this definition or add a new
one you must update your /etc/rc.dce file. Look for the line that assigns a
value to the variable CACHE_SRV and update it:

CACHE_SRV="cdscp define cached server evl tower ncacn_ip tcp:9.3.1.68"
The create_cds_entry command that comes with this book can be used to

create a cached server entry. See in 4.4.5, “Managing Caches on Client
Machines” on page 156.

Listing Directories: ~ The IBM provided option is cds1i -rd, which lists all
directories in the namespace. With the OSF provided command you can list the
directories that are present in a certain clearinghouse:

cdscp show object /.:/evl ch | grep Name | cut -f2 -d=

Using and Administering DCE

Finding all Replicas and the Master: The following command looks up a certain
directory and prints which clearinghouses contain the master and read-only
copies of that directory:

cdscp show directory /.:/hosts CDS Replicas | sed /Tower/d | sed /UUID/d

Finding the Replica Type in a Specific Clearinghouse: You can answer the
guestion by looking at the output of the cdscp show directory command as shown
above. If you want to include that query into a shell script, the following
command provides a more direct method:

cdscp show replica /.:/hosts clearinghouse /.:/evl ch | grep \
CDS_ReplicaType | cut -f2 -d=
master

Relocating a Master Directory:

As mentioned earlier, each occurrence of the same directory is called a replica.

One of them must be defined as the master. Before you can relocate an existing
master directory, for instance /.:/hosts, you must have a replica directory. Check
which replicas are defined and where they are. If none are defined, you have to

create them first:

1. Optionally install a secondary CDS server, which automatically creates a
clearinghouse. If you did so, skip the next step.

2. Create another clearinghouse locally on the system that should house it, if
you did not want to install another CDS server before:

cdscp create clearinghouse /.:/xyz_ch
If this command fails, refresh the local CDS clerk cache and try again:
<tool _dir>/cleanup_cds_cache
3. Create a replica of the directory:
cdscp create replica /.:/hosts clearinghouse /.:/xyz_ch

Then you must specify which replica will become the master and which will
be read-only. For this command you have to specify all existing replicas of a
directory. Assume the master was on evl and a read-only was on evZ2:

cdscp set directory /.:/hosts to new epoch master /.:/xyz_ch \
readonly /.:/evl ch /.:/ev2 ch

To move the master back to /.:/evl_ch and define the other two as read-only:
cdscp set directory /.:/hosts to new epoch master /.:/evl ch \
readonly /.:/xyz ch /.:/ev2 ch

Relocating a Clearinghouse:

The steps described hereafter backup the whole clearinghouse and restore it to
another existing CDS server. If the new system does not have a CDS server yet,
you must first install one. For example, you may want to move a clearinghouse
when:

You need to temporarily disconnect the host server system from the network
for repair or for other reasons.

You no longer want the current host system to function as a CDS server.

Chapter 4. Administering DCE Cells 133

134

You

want to move the clearinghouse to a server system that is physically

closer on the network to the user groups and applications that use the
information contained in the clearinghouse

Assuming you want to relocate the clearinghouse on evl to ev2, follow these

steps:

1. Install a CDS server on ev2, if there is none yet:

mkdce -n <cell name> -s <sec_srv_name> cds_second

2. Disconnect the clearinghouse from the server where it is currently running.
To do so you can use the cdscp clear clearinghouse /.:/evl ch command on

evl

which updates the clearinghouse files and ensures the files are

consistent.

3. Cop

y the clearinghouse database files from their current location (source

server system) to their new location (target server system).

To backup the evl_ch clearinghouse on ev1:

tar -cvf/dev/rmt0 /var/dce/directory/cds/*evl ch.* \
/etc/dce/cds_attributes

4. Perform the next steps on the target system (ev2):

a.

b.

Using and Administering DCE

Restore the files.
Create a new clearinghouse:
cdscp create clearinghouse /.:/evl ch

You must use the same clearinghouse name as used on the source
server system from which you copied the database files. If this
command detects the copied clearinghouse database, it will reinitialize it
to be used on your new server.

Change the Tower information in /.:/evl_ch:
List the interface definition and note the interface UUID and object UUID:

rpccp show entry /.:/evl ch

objects:
004a4f0c-951b-1e9a-b254-10005a4f15da

binding information:

<interface id> 257df1c9-c6d3-11ca-8554-08002b1c8f1f,1.0

<string binding> ncacn_unix_stream:[/var/dce/rpc/socket/006bd654-ec
84-1e9b-ba25-10005a4f4629]

<string binding> ncadg_ip_udp:9.3.1.68[]

<string binding> ncacn_ip _tcp:9.3.1.68[]

To change the IP address to the address 9.3.1.120 of ev2, unexport and
re-export the interface definition:

rpccp unexport -i 257dflc9-c6d3-11ca-8554-08002b1c8f1f,1.0 \
-0 004a4f0c-951b-1e9a-b2 54-10005a4f15da /.:/evl_ch

rpccp export -b ncadg_ip udp:9.3.1.120[] \
-i 257df1c9-c6d3-11ca-8554-08002b1c8f1f,1.0 \
-0 004a4f0c-951b-1e9a-b254-10005a4f15da /.:/evl_ch

rpccp export -b ncacn_ip _tcp:9.3.1.120[] \
-i 257df1c9-c6d3-11ca-8554-08002b1c8f1f,1.0 \
-0 004a4f0c-951b-1e9a-b254-10005a4f15da /.:/evl_ch

Do not export the local socket interface. If you need to export another
LAN interface, add two more export commands for the additional IP
address.

. Refresh the CDS clerk cache:

<tools_dir>/cleanup_cds_cache

. Update the Tower information for all directories in /.:/evl_ch:

cleanif -i 9.3.1.68 -n 9.3.1.120 -f/tmp/out.cds
/tmp/renew_dir_entries

After the clearinghouse is created on the new location, it still has the old
binding information for all directories. The first command above
searches the whole clearinghouse for the address 9.3.1.68 and creates
the renew_dir_entries command. Executing this generated shell script
recreates the replica sets of all directories, which forces an update of the
IP addresses to 9.3.1.120. See 4.3.3, “Changing IP Addresses” on

page 119 for information on the above two commands.

The clearinghouse is now on system ev2. If you had to install a new CDS
server (mkdce cds_second) on ev2 for the purpose of restoring the
clearinghouse, a /.:/ev2_ch clearinghouse was created for you. You
might want to delete it and keep only /.:/evl_ch.

cdscp delete clearinghouse /.:/ev2 _ch

5. If this was the only clearinghouse on the old location evl, you might want to
remove the CDS server from the cell with the following steps:

a.

If evl is the initial CDS server:

The initial CDS server only distinguishes itself from secondary CDS
servers in that it hosts the master copy of /.: (root directory). Since you
have moved the master replica of the root directory, the roles of Initial
CDS Server and Secondary CDS Server switch between the two systems.

To reflect this fact in your cell configuration, we must edit the
/etc/mkdce.data file on evl and ev2 and switch the two following lines
between these systems:

cds_srv COMPLETE Initial CDS Server
cds_second COMPLETE Additional CDS Server

. Refresh the CDS clerk cache on ev1:

<tools_dir>/cleanup_cds_cache

. Remove the CDS server locally on ev1:

rmdce cds_second

6. Refresh the CDS clerk caches on all systems now:

<tools_dir>/cleanup_cds_cache

Relocating a CDS Server:

This task can be performed by relocating all clearinghouses of a CDS server to
another CDS server and then deleting the old CDS server, as described above.
What you get on the new CDS server are all the clearinghouses of the old server
with the original names. You cannot change the names. You get a

Chapter 4. Administering DCE Cells 135

136

clearinghouse name which does not correspond to the system name, which in
fact does not matter. Another problem with that method is, that it does not
merge the relocated clearinghouse with one that might already exist on the
target server. If it does not bother you that the clearinghouse name is different
from the host name or you might have two clearinghouses, the method
mentioned above may be simpler, depending on how the namespace is
structured.

If you want to merge with an existing clearinghouse or if you want the new
clearinghouse to correspond to the system name, you have to perform many
manual steps. You basically have to replicate directories to the target
clearinghouse and delete them in the old one. You have to take into
considerations that further replicas might exist in other CDS servers. Assume
moving the CDS server on evl to node ev2, where a (possibly empty) /.:/ev2_ch
clearinghouse exists. You want to get rid of /.:/evl_ch. This means, it needs to
be merged with /.:/ev2_ch. These are the generalized steps:

Create a list of directories in /.:/evl_ch and /.:/ev2_ch and compare the
directories

Consider first the ones which are in both clearinghouses
- Read-only replicas in the /.:/evl_ch need no further considerations
— All master replicas in /.:/evl_ch need to be moved to /.:/ev2_ch

Find further possible replicas of these directories and issue the following
command for each directory as shown for /.:/hosts:

cdscp set directory /.:/hosts to new epoch master /.:/ev2 ch \
readonly /.:/evl ch [/.:/further ch]

Directories which are in /.:/ev2_ch only need no further considerations
Directories which are in /.:/evl_ch only need following steps:
- For read-only directories create a new replica on /.:/ev2_ch.

Then find all other replicas and the master of each directory and issue
the cdscp new epoch master command to make the new read-only known
to the others.

— For master directories create a new replica on /.:/ev2_ch

Find all other replicas of each directory and issue the the cdscp new epoch
master command as above with /.:/ev2_ch as the master.

Remember that you have to specify all existing replicas with the command
cdscp set dir to epoch new master.

Remove the CDS server

Once the old clearinghouse /.:/evl_ch contains only read-only replicas, it can
be deleted. This is done by the rmdce command.

If this server was the initial CDS server, we must edit the /etc/mkdce.data
file on both sites and switch the two following lines between the two nodes:

cds_srv COMPLETE Initial CDS Server
cds_second COMPLETE Additional CDS Server

This is described above in “Relocating a Clearinghouse” on page 133. Then
this secondary CDS server can be removed with:

rmdce cds_second

Using and Administering DCE

4.3.4.4 Relocating the Primary Security Server

The following part is an extract of the latest DCE security server release notes
that are shipped with PTF#U431018 for AIX DCE 1.2 or with AIX DCE 1.3. We
have not tested it within our test scenarios. The procedure consists of many
manual steps. Most of them cannot be performed remotely. We strongly
recommend relocating the primary security server only in extreme situations.
For example when you must upgrade your system for performance reasons or
your system is defective and can no longer be repaired.

This section contains instructions on how to relocate the primary security server,
its registry database, and associated files to another machine in the cell. The
machine may be an existing client or a security secondary machine. Relocation
steps are described for the following scenarios:

1. Primary to client (with one or more secondaries running in the cell)
2. Primary to secondary (with no other secondaries running in the cell)

In the instructions below, you may see passwords, such as -dce-, or replica
names, such as repll, referenced. Replace these values with the values that
your environment is configured with.

Please note:

1. Itis advisable to unset the BIND_PE_SITE environmental variable. Ensure
that the rpccp cache on the /.:/sec groups has the current information. To
execute this update issue the rpccp show group /.:/sec -u command on each
machine. To avoid problems with old ticket information, first exit from all the
old dce_login shells by invoking the ps command. Then exit from all shells
until only one is left.

2. Itis recommended that you maintain a backup of the security database
under /opt/dcelocal/var/security so that you can reconstruct the primary
server in case of a failure, see 4.4.1.2, “Backing Up the Files of the Security
Server” on page 143.

Primary to Client:
Following is the minimum initial cell configuration for this type of relocation
procedure. A single, three-machine cell that has:
A node configured as the primary security server (the original primary)
A node configured as the secondary security server (the secondary)
A node configured as a DCE client (the new primary).
If the primary server is up and running, ensure that the latest information is

written to the files by performing all steps logged in as local user root on the
specified machine.

1. On the original primary machine:
Perform the following steps:

dce_login cell_admin
> sec_admin -s /.:/subsys/dce/sec/master
sec_admin> state -m
sec_admin> state -s

Back up the registry database and support files using the AIX tar command.

Chapter 4. Administering DCE Cells 137

138

sec_admin> quit
> cd /opt/dcelocal/var/security
> tar cvf <tarfile> ./.mkey ./rgy data/*

Notes:

The <tarfile> specified can be a tape drive or other backup device, or it
can be a regular file that you can send in binary mode by means of the rcp
or ftp command to the new primary Security Server machine. If the original
primary node is up and running during primary relocation, you can transfer
the files individually.

. On the original primary machine:

If secd is still running, stop it by using the AIX kill -2 command. An
alternate method is to perform dce_login as cell_admin and use the stop
subcommand of sec_admin to stop the primary (make sure sec_admin is
bound to the primary site).

Notes:

If you stop the secd daemon with the AIX kill command using any flag
except SIGINT (-2), you can cause secd to exit without performing cleanup
routines. |If this is the case (as may well be if secd dies unexpectedly), these
cleanup steps will have to be done manually (see step 3). Otherwise, go to
step 4.

. On the original primary machine:

Clean up the local endpoint map if the secd bindings are still registered.
This may happen if secd is killed with a signal that does not have a signal
handler or if it ends unexpectedly. Enter the following:

> rpccp remove mapping \
-b <string binding> \
-i <interface_id> \
-0 <object uuid>
Notes:
Perform this for each secd entry in the endpoint map. These are the entries

that have the following notation when you issue the rpccp show mapping
command:

<annotation> "DCE user registry”

. On the original primary machine:

Remove the registry database and support files with the following:

rm /opt/dcelocal/var/security/.mkey

rm -r /opt/dcelocal/var/security/rgy data*

rm /opt/dcelocal/var/security/tmp/krb5kdc_rcache
exit

vV V V V

Comment out the line in /etc/rc.dce that will restart secd upon rc.dce by
adding a pound sign (#) to the beginning of the line.
Before:

daemonrunning $DCELOCAL/bin/secd
After:
#daemonrunning $DCELOCAL/bin/secd

Delete the line in /etc/mkdce.data that indicates the primary security server
is running on the local machine.

sec_srv COMPLETE Security Server

Using and Administering DCE

5. On the new primary node (the original client):
Restore the backed up files by issuing the following:

> cd /opt/dcelocal/var/security
> tar xvf <tarfile_created_in_stepl>

Verify that the permission set on the restored rgy_data directory is 755 and
the permission set on all restored files (.mkey and all files under rgy_data) is
600.

6. On every machine in the cell:

Update the primary server's entry in /opt/dcelocal/etc/security/pe_site to
reflect the client as the new primary (update the IP address). To do this,
replace the bindings containing the original primary replica address with the
address of the new primary (the original client). Ensure that these bindings
are always the first in the file. The IP address of the machine can be found
by issuing the AIX host command:

> host <machine_name>

Update the entry in /krb5/krb.conf to reflect the client as the new primary
machine.

7. On the new primary machine:

Ensure that you are running under only one KSH shell.
Start secd by issuing:

> secd -d -v

This will start secd in the foreground. Wait approximately three minutes until
secd starts exporting its bindings to the namespace. Uncomment the line in
/etc/rc.dce so that secd will be restarted on re.dce.

Before:

#daemonrunning $DCELOCAL/bin/secd

After:
daemonrunning $DCELOCAL/bin/secd

Add the following line to /etc/mkdce.data to indicate that the primary security
server is running on the local machine:

sec_srv COMPLETE Security Server

secd may not start at the first invocation; you may see the following error
messages:

Registry: Fatal Error - Cannot establish dce registry identity

at line 837 of

file ../../../../../src/security/server/rs/rs.c - 0x1712207b -

Registry server unavailable (dce / sec)

Registry: Fatal Error - DT exiting with an exception

at line 793 of file ../../../../../src/security/server/rs
/rs_main.c -

0x1712207

b - Registry server unavailable (dce / sec)

Registry: Fatal error in main thread; exiting

If secd does not start, restart it; it should come up on a subsequent try. It is
recommended that you start secd in debug/verbose mode (using the -d and
-v flags); when you see the message that secd is exporting its bindings to
/...I<cellname>/subsys/dce/sec/master, you can assume it has started
properly. Starting secd may take several minutes. If it fails to export its

Chapter 4. Administering DCE Cells 139

bindings after several minutes, use cdsdel to delete the
/.:/subsys/dce/sec/master object from the namespace and use rpccp to
remove member /.:/sec -m /.:/subsys/dce/sec/master. Then try to start secd
again.

8. After secd has started successfully, refresh the CDS cache on every machine
in the cell as follows:

> kill -9 <PIDs of all CDS daemons currently running on
the machine>

cd /opt/dcelocal/var/adm/directory/cds

rm cds_cache.*

rm cdsclerk *

rc.dce cds

vV V V V

If you do not refresh the CDS cache, you may experience binding failures to
the new primary machine. It is important to use the AIX kill command with
the sigkill (-9) flag so that the CDS daemons do not write in-memory
information to disk; do not use dce.clean or kill -2 in this step.

9. On every machine in the cell:

Stop and restart sec_clientd so that it will rebind to the new primary
machine. Use the -purge option so that existing credentials will be destroyed
and recreated.

> dce.clean sec_clientd
> sec_clientd -purge

If you did not refresh the CDS cache (in step 8), sec_clientd may fail to
restart and the following messages may be displayed:

sec_clientd 09/25/93 21:31:27 - Unable to validate machine
context ... Registry server unavailable (dce / sec)

sec_clientd 09/25/93 21:31:27 -

Unable to establish valid machine context creds
during initialization...ABORTING ... Registry server
unavailable (dce / sec)

Other long-running applications that may have security server binding
handles cached in their runtime should also be stopped and restarted.
After all these steps are successful, you may want to issue dce.clean secd
and restart normally with rc.dce secd. Run chpesite on all machines in the
cell to update the /opt/dcelocal/etc/security/pe_site file.

Primary to a Secondary:

Following is the minimum initial cell configuration for this type of relocation
procedure.
A single, two-machine cell that has the following:

A node configured as primary security server (the original primary)

A node configured as a secondary security server to be the new primary
machine (called repll)

If the primary replica is running, ensure that the latest information is written to
the files by performing all steps while logged in as local user root on the
specified machine.

1. Exactly the same step as in Primary to Client

140 Using and Administering DCE

a A~ N

Exactly the same step as in Primary to Client
Exactly the same step as in Primary to Client
Exactly the same step as in Primary to Client
On the new primary node (currently the secondary machine):
Remove references to the security primary in the namespace:

> dce_login cell_admin
> cdscp delete obj /.:/subsys/dce/sec/master

Also remove /.:/subsys/dce/sec/master from the rpc groups:

> rpccp remove member /.:/sec -m /.:/subsys/dce/sec/master
> rpccp remove member /.:/sec-vl -m /.:/subsys/dce/sec/master

The cdscp delete object and rpccp operations can take several minutes.
Now destroy the secondary machine:

> sec_admin -s /.:/subsys/dce/sec/repll
sec_admin> destroy subsys/dce/sec/repll
sec_admin> quit

> exit

Remove the .mkey file that remains:
> rm /opt/dcelocal/var/security/.mkey

Verify that the /opt/dcelocal/var/security/rgy_data directory is empty.
Restore the backed up files:

> cd /opt/dcelocal/var/security
> tar xvf <tarfile_created_in_stepl>

Verify that the permission set on the restored rgy_data directory is 755 and
the permission set on all restored files (.mkey and all files under rgy_data) is
600.

. Exactly the same step as in Primary to Client

. On the new primary machine:

Start secd by issuing:
> secd -d -v

This will start secd in the foreground. Wait approximately three minutes until
secd starts exporting its bindings to the namespace.

secd may not start at the first invocation; you may see the following error
messages:

Registry: Fatal Error - Cannot establish dce registry identity
at line 837 of file ../../../../../src/security/server/rs/rs.c -
0x1712207b - Registry server unavailable (dce / sec)

Registry: Fatal Error - DT exiting with an exception

at line 793 of file ../../../../../src/security/server/rs
/rs_main.c -

0x1712207 b - Registry server unavailable (dce / sec)

Registry: Fatal error in main thread; exiting

If secd does not start, restart it; it should come up on a subsequent try. It is
recommend that you start secd in debug/verbose mode (using the -d and -v
flags); when you see the messages that secd is exporting its bindings to
/...I<cellname>/susbys/dce/sec/master, you can assume it has started

Chapter 4. Administering DCE Cells 141

properly. Starting secd can take several minutes. If it fails to export its
bindings after several minutes, use cdsdel to delete the
/.:/subsys/dce/sec/master object from the namespace and try to restart secd
again.

Wait for three minutes after secd has exported its bindings to the namespace
and propagated its database to any secondaries, and then perform the
following steps to complete cleanup of the old secondary machine:

> dce_login cell_admin

> sec_admin -s /.:/subsys/dce/sec/master
sec_admin> delrep subsys/dce/sec/repll -f
sec_admin> quit

> exit

8. On every machine in the cell (except for the new primary machine):
Refresh the cds cache as follows:

> kill -9 <PIDs of all CDS daemons currently running on
the machine>

cd /opt/dcelocal/var/adm/directory/cds

rm cds_cache.*

rm cdsclerk_*

rc.dce cds

vV V V V

Also execute the following commands to update the local caches used by
rpccp

> rpcep show group /.:/sec -u

> rpccp show group /.:/sec-vl -u

If you do not refresh the CDS cache, you may experience binding failures to
the new primary machine. It is important to use the AIX kill command with
the sigkill (-9) flag so that the CDS daemons do not write in-memory
information to disk; do not use dce.clean or Kkill -2 in this step.

9. Exactly the same step as in Primary to Client

4.4 Backup/Restore and Other Housekeeping Tasks

As with any operating system or application programs and data, a failure of
hardware or software or a mistaken administrator operation can jeopardize the
functionality of the service.

All DCE and DFS services provide replication of their databases, which can be
considered an online backup. However, there may be cases where replication is
not sufficient and traditional backups are still needed or at least recommended
such as:

Accidental removal of a series of DCE accounts
Accidental removal of the CDS namespace contents
Release upgrades

Attempt to change the cellname

Unsuccessful change of an IP address

Accidental removal of database files

The following sections cover:
1. Backup/restore of DCE core services databases

2. Backup/restore of DFS databases

142 Using and Administering DCE

3. Backup/restore of DFS data
4. Controlling system created files that may fill disk space

5. Managing caches

4.4.1 Backing Up DCE Core Services Related Information

This step focuses on the DCE data that is necessary for the DCE core services to
run as configured. The subsequent sections show the lack of need to backup
RPC data, and show the way in which to save the security service and the CDS
service files.

4.4.1.1 No RPC Defined Mapping to Backup
The RPC component of DCE has no static data to be taken into account.

When the DCE processes of a cell restart, all the RPC mappings will be
repopulated by the starting DCE servers of a system. Following are the
important RPC files:

/var/dce/rpc/rpcdep.data This is the endpoint map which is stored on disk so
that the RPC daemon can be stopped and restarted
without requiring servers to reregister with the RPC
daemon. After a system reboot, RPC-based servers
restart and reregister with the endpoint map service,
so the database file needs to be deleted before the
RPC daemon starts. This is done by the script
/etc/rc.dce which starts up all the DCE processes.

/var/dce/rpc/rpcdllb.dat Along with the endpoint map database rpcdep.dat,
rpcd creates the NCS 1.5.1 local location broker file.
Like rpcdep.dat, rpcdllb.dat needs to be deleted at
system boot time.

/var/dce/rpc/socket Is a directory which contains the local sockets for the
system. A server which is going to unregister,
deletes its entries in this directory. There is no
special maintenance needed.

4.4.1.2 Backing Up the Files of the Security Server
The following steps need to be performed on the master security server. There
is no need or benefit in saving a replica server's database.

1. Login at the master security server site as cell_admin

2. Put the security registry database in read-only mode, which causes the in
memory copy to be saved to disk

$ sec_admin
sec_admin> state -maintenance

or stop secd (dce.clean sec_srv)
3. Backup the associated files, for example:

tar -cvf/dev/rmt0 /opt/dcelocal/var/security/.mkey \
/opt/dcelocal/var/security/rgy_data

If you use the cp command, be sure to save the master key file .mkey in the
same directory, too. The master key is used to encrypt the registry
database, and if the key is lost, the backup is useless.

4. Reactivate the Security server.

Chapter 4. Administering DCE Cells 143

144

$ sec_admin
sec_admin> state -service

or if stopped restart it (rc.dce sec_srv)

4.4.1.3 Restoring the Files of the Security Server
1. Login at the master security server site as cell_admin

2. Stop the security server
dce.clean sec

3. Restore the associated files
tar -xvf/dev/rmt0

4. Restart the security server

#rc.dce sec

4.4.1.4 Backing Up the Files of a CDS Server

The CDS namespace is divided into one or several clearinghouses. This section
looks at how to backup the files associated with one specific clearinghouse. We
have tested three different cases:

1. The first case represents the situation where CDS can be suspended for
copying the CDS files from that specific server. This is the most general way
that works even if the namespace is distributed and replicated.

2. The second case considers keeping the name service active by creating a
read-only copy for that clearinghouse. The description of this procedure
assumes that there is only one CDS server in the cell with all master
directories. These steps are automated in the shell script backup_CH.

Of course this is not realistic for a production environment. However, the
description might be helpful to give ideas on how such a requirement could
actually be met in more complex environments.

3. The third case provides a solution where uninterrupted write access to the
clearinghouse is required. This procedure is very similar to the second one
above, but it creates a write-able copy of the clearinghouse. The same
restrictions apply.

Backup by Disabling the Service:

This is the normal procedure as it is also suggested in the DCE product
documentation. It will work no matter how distributed and replicated your CDS
is.

If your CDS is distributed, you have to backup all clearinghouses which contain
one or more master replicas of any directory. Backup all these clearinghouses
at the same time as much as possible and try not to change the replica set of
any directory until you have backed up all clearinghouses. This means that you
should not make new replicas or change a read-only into a master in the
meantime. Otherwise you might have to do some extra work to recreate
consistency upon restore.

Before you begin to backup clearinghouses you must know where your master
replicas are. See also 4.3.4.3, “Moving CDS Resources” on page 132 to find
some helpful commands to find all master and read-only replicas.

1. Login to the CDS server on which you want to backup a clearinghouse

Using and Administering DCE

2. Login as cell_admin

3. Disable the clearinghouse you want to backup, for instance /.:/evl_ch, with
one of the three following methods:

With cdsdiag:

cdsd diag >
manage dc /.:/evl ch

Disabling the CDS server, which would affect all clearinghouses
dce.clean cds

The same is achieved with cdscp disable clerk followed by cdscp disable
server.

Disconnecting a specific clearinghouse from the CDS server:
cdscp clear clearinghouse evl ch

This updates the clearinghouse files and ensures the files are consistent.
However, this method takes a long time to reconfigure the clearinghouse.

4. Backup all files associated with clearinghouse evl_ch:

tar -cvf/dev/rmt0 /var/dce/directory/cds/*evl ch.* \
/var/dce/directory/cds/cds_files /etc/dce/cds_attributes \
/etc/dce/cds_config /etc/dce/cds.conf

5. Reactivate the clearinghouse according to the method you had stopped
activities with before:

With cds_diag:

cdsd_diag >
manage ec /.:/evl_ch

Restarting the CDS server:
/etc/rc.dce cds
Or with OSF commands:

cdsadv
cdsd

Reconnecting the clearinghouse with the CDS server

cdscp create clearinghouse /.:/evl ch
Keeping a Read-only Copy Active:

What we describe here is a procedure on how to create a read-only copy of a
clearinghouse to be able to backup the primary clearinghouse while information
is still available from the new read-only clearinghouse. We have provided the
shell script backup_CH for this case. It works in a very simple environment with
just one CDS server housing all master replicas. However, we consider the
script useful for an understanding on how this could be done even in a
distributed and replicated environment.

This procedure does the following steps:
1. Creates a temporary clearinghouse /.:/xxx_ch

2. Creates a replica for each directory in the clearinghouse and defines the
replica set with:

Chapter 4. Administering DCE Cells 145

146

cdscp create replica /.:/hosts clearinghouse /.:/xxx_ch
cdscp set directory /.:/hosts to new epoch master /.:/evl ch \
readonly /.:/xxx_ch

3. Then backup /.:/evl_ch as described above in “Backup by Disabling the
Service” on page 144

4. Once /.:/levl_ch is backed up and running, the temporary clearinghouse can
be deleted:

cdscp delete clearinghouse /.:/xxx_ch

The command cdscp set dir to new epoch master defines the replica set, which

assigns the role of each replica of a certain directory to either master, read-only
or excluded. Since you have to specify all existing replicas with this command,

you have to know or find them. This is not implemented in our script.

Furthermore, in a more complex environment you probably have replication
already implemented to a certain extent. If all directories of a clearinghouse are
replicated, you need not care about read-only availability, it is there. If this is
not the case, you need to find all master directories which do not have a
read-only replica and copy only those.

The script backup_CH is self-explaining and can be found in the diskette that
comes with this publication.

Keeping the Clearinghouse Active for Write-able Access:

If write access is really needed at all times, then this procedure should be
looked at. Again, this procedure describes a case where there is only one CDS
server. If there are already multiple CDS servers, you need to adjust the steps
that execute the command cdscp set dir to new epoch master in such a way that
you find all replicas for a replica set and specify all of them in this command.

What you basically would have to do for each clearinghouse that contains master
replicas is:
1. Create a temporary clearinghouse
2. Find all master directories, for each:
a. Create a replica in the new clearinghouse
b. Find all read-only replicas that might exist

c. Create the new replica set with the master replica on the temporary
clearinghouse; exclude the one on the original clearinghouse to prevent
updates

3. Backup the original clearinghouse as outlined in “Backup by Disabling the
Service” on page 144

You want to backup this clearinghouse and not the temporary one, because
you want to keep its name.

4. After the backup redefine the replica set for all directories in the temporary
clearinghouse so that the master is back on the original

5. Delete the temporary clearinghouse

The following is an outline of the procedure we tested in a scenario with just one
CDS server:

Using and Administering DCE

1. Select the directories of the clearinghouse that must be kept active with read
write access while backing up the files.

2. Replicate each of those directories which have their master copy in this
clearinghouse.

A skulk, that is, an update of the read-only copy of a CDS directory, is
performed when the cdscp set to new epoch command is executed on that
directory. By excluding the directory just after this skulk we can prevent
another skulk to occur later, if someone updates the master of a directory
before the clearinghouse is disabled.

Three steps need to be applied on each directory :
cdscp create replica /.:/dir_name/sudirl clearinghouse /.:/xxx_ch

This first creates the directory copy (called read-only replica) into the second
clearinghouse (/.:/xxx_ch).

cdscp set directory /.:/dir _name/subdirl to new epoch master \
/.:/xxx_ch readonly /.:/evl _ch

Secondly the directory copy in the second clearinghouse is populated and
switched to be the master or read-write copy (called master replica). The
original directory is put in read-only state (read-only replica).

cdscp set directory /.:/dir_name/subdirl to new epoch master \
/.:/xxx_ch exclude /.:/evl_ch

Instead of keeping the read-only copy online for the backup, this third step
excludes the directory replica from the namespace. The contents of this
directory copy cannot be affected by any changes done to the master. When
it will be brought back to activity after the backup, it will be populated with
the possible changes that might have occurred in the meantime to the
temporary master in /.:/xxx_ch.

3. Disable the clearinghouse(s) associated with the server to backup:

cdsd_diag >
manage dc /.:/evl_ch

4. Backup the associated files as in the preceding case
5. Reactivate the clearinghouse(s):

cdsd diag >
manage ec /.:/evl ch

6. Bring back to activity the directories that may have been excluded from the
namespace. The dual operation of the example shown there becomes:

cdscp set directory /.:/dir_name/subdirl to new epoch master \
/.:/xxx_ch readonly /.:/evl ch

This step updates the read-only replica that was explicitly excluded and
updates it with the changes that may have occurred in the meantime to the
master replica within clearinghouse /.:/xxx_ch.

7. Move back the master copy of each directory replica to the initial
clearinghouse (/.:/evl_ch).

cdscp set directory /.:/subsys to new epoch master /.:/evl ch \
readonly /.:/xxx_ch

For an application that must be kept in permanent activity, the administrator
may choose to keep the associated entries in a specific set of
clearinghouses distributed across the cell and back them up more frequently.

Chapter 4. Administering DCE Cells 147

8. Switch back the states of each directory replica with their master copy back
in the initial clearinghouse (/.:/evl_ch).

4.4.1.5 Restoring the Files of a CDS Server
To restore any of the clearinghouses perform the following steps:

1. Stop DCE
2. Restore the database(s)
3. Restart DCE

4. Clean all clerk caches with cleanup_cds_cache (see 4.4.5, “Managing Caches
on Client Machines” on page 156)

4.4.2 Backing Up DFS Servers Related Information

148

There are two types of entities that need backup considerations. The first
consists of the two databases that store fileset locations (FLDB) and
configuration of the DFS backup subsystem, the backup database. The fileset
data builds the second type, which is discussed in 4.4.3, “Backing Up and
Restoring DFS Data” on page 152.

DFS provides a sophisticated backup subsystem that allows you to create full or
incremental backups of filesets or aggregates. The backup database defines
backup families, backup schedules, location of machines with one or multiple
tape devices (tape coordinators), and which families use which tape coordinator.
The backup database is a distributed database that uses the same ubik
algorithm to synchronize among its server processes like the FLDB. The backup
database can be backed up within the backup subsystem with bak savedb. For
more details about the backup subsystem or the bak command suite consult the
ITSO publication The Distributed File System (DFS) for AIX/6000 or InfoExplorer*.

In the following subsections we want to provide a short recapitulation on how the
FLDB is backed up and restored.

4.4.2.1 Backing up the FLDB

The FLDB is a distributed database that stores fileset locations. Multiple FLDB
servers are running in a cell, each of them controlling a database. Update
requests go through a set of calls belonging to a library named ubik. The ubik
routines designate one master server and update that database. The other
servers, if there are any, become slaves and their database is automatically
updated by the ubik routines.

The set of information stored for each fileset in the FLDB can be created from
information stored on the fileset itself, the fileset header. Under normal
circumstances this redundant information is consistent or synchronized. The fts
command suite offers options to synchronize FLDB and fileset header
information in both directions.

The chances to lose the entire FLDB are minimal, if this service is replicated as
recommended. Furthermore, most of the FLDB information can be recreated
from all fileset headers. Exceptions are non-LFS filesets, which do not have
fileset headers, and replication information.

To be prepared for worst cases it might make sense to backup the FLDB in
regular intervals, especially if a lot of fileset replication is defined or you are
using non-LFS filesets.

Using and Administering DCE

1. Keep the status of the FLDB database in a readable file for information :

date > /tmp/BACKUP/dfs/1s_f1db_output
fts 1sfldb >> /tmp/BACKUP/dfs/1s_f1db output

2. Stop the FLDB (flserver) service via the bos command suite:

bos status /.:/hosts/ev8 -localauth

Instance upserver, currently running normally.
Instance flserver, currently running normally.
Instance ftserver, currently running normally.

bos stop /.:/hosts/ev8 flserver -localauth

bos status /.:/hosts/ev8 -localauth

Instance upserver, currently running normally.
Instance flserver, disabled, currently shutdown.
Instance ftserver, currently running normally.

3. Copy the FLDB files to the backup media :

di /var/dce/dfs/f1db*

“TWmmm - 1 root 145472 Jun 10 14:24 /var/dce/dfs/f1db.DBO
B rr— 1 root 64 Jun 10 14:24 /var/dce/dfs/f1db.DBSYS1
cp -v /var/dce/dfs/f1db* /tmp/BACKUP/dfs

4. Restart the FLDB service via the bos command suite:

ps -ef | grep flserver
root 11945 8382 4 14:47:13 pts/2 0:00 grep flserver
bos start /.:/hosts/ev8 flserver -Tocalauth
ps -ef | grep flserver
root 6829 8382 3 14:47:40 pts/2 0:00 grep flserver
root 11947 10700 35 14:47:35 - 0:00 /opt/dcelocal/bin/flserver

From this file, in case of reloading, it will be possible to repopulate a new FLDB
server and from there to synchronize the cell file servers (ftserver processes) of
the cell if needed

During this suspension of the FLDB activity, the DFS clients currently in
communication with DFS servers are not affected. Only the new requests for the
location of servers are delayed.

4.4.2.2 Restoring an FLDB
— Please Note

The steps outlined here are a summary of ideas based on our experiences in
this project and were not tested due to lack of time.

However, we wanted to include them to give you ideas on how to tackle this
important issue.

FLDB databases have version numbers assigned to them. If any problem occurs
and the ubik routines that manage the FLDB databases have elected a new
synchronization site, this site checks all other FLDB servers and copies the
database with the highest version number to its own machine. This will
eventually become the master database, from which the others are updated.

So if we want to restore an FLDB database, we have two problems:

1. We cannot predict which server would be elected to become the master
2. Our backup might have a lower version number and therefore be overwritten
by an existing one

Chapter 4. Administering DCE Cells 149

150

Therefore, we recommend trying one of the two following procedures. However,
before you try this, be sure the effort to synchronize from the fileset headers is
really too big and the backup of the FLDB is not outdated for too long a time.

Restoring the FLDB on All Servers:

Try this procedure first:
1. Stop DFS on all servers with dfs.clean
2. Restore the FLDB files on all flserver machines

3. Start DFS on all servers with rc.dfs
Restoring the FLDB on One Server by Removing the Others:

If the first procedure does not work:

1. Remove all FLDB servers but the one on which you made the backup as
outlined in 4.4.2.1, “Backing up the FLDB” on page 148; use rmdfs dfs_fldb,
if this is still possible

2. If this is not possible, try a local unconfiguration and manually delete the
CDS entries for these servers:

rmdfs -1 dfs_fldb
Delete the CDS entries of the form /.:/host/evl/flserver
Remove the RPC group members from /.:/fs
3. Restore the FLDB files on the one flserver machine that has been left over

4. Start the flserver: If this does not work, remove and reconfigure the FLDB
server, restore the files once again, and restart the flserver

5. Reconfigure the other FLDB servers

4.4.2.3 Recreating an FLDB
If the files of the FLDB servers are corrupted or accidentally destroyed, the
flserver can be started anyway, but produces the following error message:

fts 1sfldb -Tocalauth
Could not access the FLDB for attributes
Error: FLDB: cannot create FLDB with read-only operation (dfs / vls)

By using the fts syncfldb for each fileset server in the cell, the needed entries
are repopulated from information on each server. Here are the required steps
when starting from an empty FLDB.

1. Establish the list of servers; for that purpose it is a good habit to periodically
list the contents of the FLDB into a file with fts 1sfldb

2. Create the server entries :

fts crserverentry has to be executed for each server that has filesets which
need to be known in the FLDB. The command requires the knowledge of the

appropriate principal for getting the information from the server. This will be
given by bos lsadmin.

Example for server ev8:

Using and Administering DCE

bos Tsadmin /.:/hosts/ev8 admin.fl -localauth

Admin Users are: user: hosts/ev8/dfs-server, group: subsys/dce/dfs-admin
fts crserverentry /.:/hosts/ev8 hosts/ev8/dfs-server -localauth

fts 1sserverentry -all -Tocalauth

9.3.1.127 (2:0.0.9.3.1.127)

FLDB quota: 0; uses: 0; principal='hosts/ev8/dfs-server’'; owner=<nil>

. Populate the FLDB database with the fileset entries from all the servers :

fts syncfldb -server /.:/hosts/ev8
number of sites: 1

server flags aggr siteAge principal owner
9.3.1.127 RW Tvs.root 0:00:00 hosts/ev8/dfs-server<nil>

-- done processing entry 6 of total 9 --
Creating an entry for fileset 0,,7 in FLDB
readWrite ID 0,,7 valid

readOnly 1D 0,,8 invalid

backup ID 0,,9 invalid
number of sites: 1
server flags aggr siteAge principal owner
9.3.1.127 RW 1fsroot 0:00:00 hosts/ev8/dfs-server<nil>

-- done processing entry 7 of total 9 --
Creating an entry for fileset 0,,4 in FLDB
readWrite ID 0,,4 valid

readOnly ID 0,,5 invalid

backup ID 0,,6 invalid
number of sites: 1
server flags aggr siteAge principal owner
9.3.1.127 RW 1fsroot 0:00:00 hosts/ev8/dfs-server<nil>

-- done processing entry 8 of total 9 --
Creating an entry for fileset 0,,1 in FLDB
readWrite ID 0,,1 valid

readOnly ID 0,,2 invalid

backup ID 0,,3 invalid
number of sites: 1
server flags aggr siteAge principal owner
9.3.1.127 RW 1fsroot 0:00:00 hosts/ev8/dfs-server<nil>

-- done processing entry 9 of total 9 --
FLDB synchronized with server /.:/hosts/ev8

The fts syncfldb command inspects filesets residing on the file server
machine specified by -server. It checks either all of the filesets on -server or
only the filesets on the optionally specified -aggregate . It checks that the
FLDB correctly records every fileset whose fileset header is marked on-line.
It changes any necessary FLDB entry to be consistent with the status of each
fileset on the server

This command also performs the following additional functions

If it finds a backup fileset whose read-write source no longer exists at the
same site, it removes the backup from the site.

If it finds a fileset ID number that is larger than the value of the counter
used by the FL Server when allocating fileset ID numbers, it records this

Chapter 4. Administering DCE Cells 151

ID number as the new value of the counter. The next fileset to be
created receives a fileset ID number one greater than this number.

If necessary, it increments or decrements the number of fileset entries
recorded as residing on a File Server machine in the FLDB entry for the
server.

It is recommended that fts syncserv is run for all file server machines in a
cell after fts syncfldb is run against all File Server machines in the cell.

The fts syncfldb and fts syncserv commands cannot restore replication
information that was lost when an entry for a DCE LFS fileset was removed
from the FLDB. Replication information must be reconstructed with the fts
setrepinfo and fts addsite commands.

Because non-LFS filesets do not have fileset headers, the fts syncfldb and
fts syncserv have limited effectiveness on non-LFS filesets.

4.4.3 Backing Up and Restoring DFS Data

There are basically two methods to backup DFS data:
Using the DFS backup subsystem with the bak command suite.

As mentioned above in 4.4.2.1, “Backing up the FLDB” on page 148 the
backup service allows for setting up sophisticated automated backup
procedures. You define tape coordinator machine(s) that have tapes
attached to them and you define families of filesets and/or aggregates that
are going to be backed up together with the same schedules and to the
same tape coordinator.

Instantaneous backups with the fts command suite.

The fts dump and fts restore commands let you create instantaneous
backups to files or to media.

These are the only two options that preserve the DFS ACL information. All AIX
backup/restore commands only consider owner and group IDs (UID/GID) and the
UNIX mode bits derived from the user_obj, group_obj, mask_obj, and other_obj
permissions.

For more information consult the ITSO publication The Distributed File System
(DFS) for AIX/6000 or InfoExplorer.

4.4.4 Controlling Disk Space: System Created Files

152

DCE is creating a lot of files which it uses for its operation:
Database files
Caches
Credential files
Socket special files

All these files can vary a lot in size and number. So they can use up all disk
space or i-nodes of a file system. If a file system becomes full for one of these
reasons, the affected components will not work anymore which may have an
influence on the operation of other components.

DCE stores all these files underneath the /var directory. The /var file system is
also used for other variable size system files. It is important to create separate

Using and Administering DCE

file systems for DCE to decouple DCE from the operating system as advised in
4.1.1, “Preparing for DCE Configuration” on page 84.

4.4.4.1 Databases
Most DCE servers control a database which grows with the number of objects
stored in it. The database files are in the following directories:

Security server: /opt/dcelocal/var/security/rgy_data

The files within this directory mainly grow with the number of principals and
accounts at a rate of of about 1KB per user.

CDS server: /opt/dcelocal/var/directory/cds

The database files mainly grow with the number of client workstations
(approximately 1.4KB per client), but also with the number of application
servers. If you are using Single Login/6000, the number of database entries
also grows with the number of users, which might become critical. Each
user has an object of approximately 2.1KB in CDS.

RPC daemon: /opt/dcelocal/var/rpc

The endpoint map files grow with the number of application servers. The
number of socket files grows with the number of DCE client applications
running on a server system, which corresponds to the number of concurrent
local client/server connections.

DFS FLDB: /opt/dcelocal/var/dfs

The FLDB grows with the number of filesets. It may become large, if there is
a lot of users and each of them has their own fileset.

Observe these directories and increase the file system size(s) as necessary.
See also the sizing guidelines in 2.3, “Sizing Guideline” on page 31 for
information on disk space requirements.

4.4.4.2 Cache Files
Cache files can be found on every DCE client system. There are two caches in
/opt/dcelocal/var/adm and their size can be limited:

CDS clerk cache: /opt/dcelocal/var/adm/directory/cds

The size of the clerk cache can be limited, if the cdsadv process is started
with the -c flag.

DFS cache: /opt/dcelocal/var/adm/dfs/cache

This cache can be configured with the DFS client configuration or with the
-block option to the dfsd command or within the file
/opt/dcelocal/etc/Cachelnfo. It should not be set larger than 90% of the
logical volume size. For a new cache size to take effect, the system must be
rebooted.

See also 4.4.5, “Managing Caches on Client Machines” on page 156 for more
information about cache management.

Chapter 4. Administering DCE Cells 153

154

4.4.4.3 Credential Files

A credential file is created, for instance, when a principal logs in. It contains all
tickets that are granted to a principal as long as his Ticket Granting Ticket (TGT)
is valid. The next time the same user logs in, he gets a new credential file. So
the number of these files is increasing and may reach the maximum number of
i-nodes defined for a file system or fill up the file system space. The rmxcred
command should be used to remove stale credential files:

rmxcred -?
Usage: rmxcred [-h hours] [-d days] [-v] [-f | -p principal]

Default: all ticket caches totally expired are purged except
for the machine context, and except for those used by the
secd and cdsd programs. (To remove any of these explicitly,
specify -p and the name “self’, “dce-rgy’, or “cds-server')

Use -d and -h options to only remove caches that have

been expired for the specified # of days or hours. They can
be set separately or in combination. Use -p to remove stale
caches for the specified principal only. OK to specify xyz
for principals of form “hosts/machine/xyz'. Use -f option to
force removal of all stale caches, including special ones
“self’, “dce-rgy’, and “cds-server'. -f ignored if -p is also
specified

The following example shows how the number of credential files is reduced:

1s /var/dce/security/creds | wc -w
17
rmxcred -v
Principals with expired tickets:
/.../old.itsc.austin.ibm.com/cell_admin
/.../old.itsc.austin.ibm.com/cel1_admin
/.../old.itsc.austin.ibm.com/cell_admin
/.../old.itsc.austin.ibm.com/cel1_admin
1s /var/dce/security/creds | wc -w
13

Put the command rmxcred into crontab so that credentials are cleaned up at
regular intervals:

1. Login as root

2. Call crontab -e, which opens up a vi editor session on your crontab file

3. Insert, for instance, the following line which causes rmxcred to be run daily at
1:00 am:

01*** /bin/rmxcred -h 10
It will remove credential files that have been expired for 10 or more hours.
4. Save the file

5. You can check the entry with crontab -1

Using and Administering DCE

4.4.4.4 Socket Files for Local RPC

For a description of local RPC see also 5.1.3, “Local RPCs” on page 221. If DCE
clients and servers are on the same machine, they use the ncacn_unix_stream
protocol sequence which communicates over a local socket special file.

The endpoint for a ncacn_unix_stream binding handle is represented as a full
pathname to a UNIX socket file. When allowing the RPC runtime to assign an
endpoint to an ncacn_unix_stream binding, the binding will be an object UUID,
which is guaranteed to be unique. This means there is no chance that a socket
file will ever be used over again on two invocations of a DCE application.

For a newly configured cell with the following services:

<evl:root>cat /etc/mkdce.data

cds_cl COMPLETE ~ CDS Clerk
cds_srv COMPLETE Initial CDS Server
dfs_cl COMPLETE DFS Client Machine

dfs_fldb COMPLETE DFS Fileset Database Machine
dfs_repsrv COMPLETE DFS Replicated Fileset Server Machine

dfs_scm COMPLETE DFS System Control Machine
dfs_srv COMPLETE DFS File Server Machine
dts_local COMPLETE Local DTS Server

rpc COMPLETE RPC Endpoint Mapper

sec_cl COMPLETE ~ Security Client

sec_srv COMPLETE Security Server

The number of sockets observed is 152.

<evl:root>1s /var/dce/rpc/socket | wc -w
152

For each DCE command a new file is created:

dce_login -c cell_admin dce

Password must be changed!

1s /var/dce/rpc/socket | wc -w
153

When a well written DCE server application exits under normal conditions, it will
unregister its endpoints from the RPC endpoint map, among other things, before
it exits. This should also remove the socket file, if it had been system created.

When for any reason these files are not cleaned up, as was the case with the
DCE build we were using, the number of files can reach the limit of the file
system. All DCE activity will be frozen due to lack of i-nodes. We observed an
increase up to 2463 inodes after less than two weeks of cell activity.

1s /var/dce/rpc/socket | wc -w
2463

If this happens, the following utility can be run to delete stale socket files:
rpc.clean -p /var/dce/rpc/socket
This command is also executed as part of the dce.clean script to stop DCE. In

fact, once DCE is stopped, the files in /var/dce/rpc/socket could also be manually
deleted.

Chapter 4. Administering DCE Cells 155

—— Please note

This happened to us because we were using very early code. The socket
files are deleted by the endpoint map, if an application correctly unregisters
upon termination. Only if applications do not unregister correctly, you might
experience a growing number of stale socket files.

4.4.5 Managing Caches on Client Machines

156

Client systems house to local caches, one for CDS and one for DFS. They speed
up CDS lookups and DFS data access. However, they can cause DCE operations
on the client to be either really slow, because many timeouts occur, or to
completely hang, if one of the following occurs:

They point to a server which is out of order
Information is outdated
Cache is corrupted or destroyed by a mistaken operator intervention

This section covers the aspects of refreshing these caches. See also 4.4.4.2,
“Cache Files” on page 153 for limiting the cache sizes.

4.4.5.1 Managing the CDS Clerk Cache

In order to bind to servers, DCE client programs need to contact the CDS for
binding handles. All client requests go via the local cds_clerk. The cds_clerk
caches all information it gets from the CDS servers in a local cache. The cache
is basically held in virtual memory. It is written to disk, when the CDS clerk is
disabled. It can be found in directory /opt/dcelocal/var/adm/directory/cds.

CDS access requests from client applications always go via a CDS clerk and its
cache. If the cache gets messed up or contains outdated information because
some server information has been changed in the cell, the application may
experience timeouts or, in the worst case, fail, because it receives invalid
binding information. Since binding handles are usually received in a random
order, one application may be lucky to get a good binding handle, another gets a
stale handle and the server call fails with a communication error. The default
timeout is 30 seconds. The application can try the next handle and so on. So
we must find a way to get rid of the stale entries.

The CDS server does not know what information the clients store, so it cannot
notify the clients of any changes. The only information that is passed to CDS
clients is the location of clearinghouses via advertisements. However, it is only
a matter of time, when CDS clerk cache entries are refreshed by client requests.
The expiration age is usually between 8 and 12 hours, see “Expiration Age of
CDS Clerk Cache Entries” on page 157 for more information.

Many of the administration tasks described in this publication state that it is
recommended to refresh all client caches. Think twice before you do it,
because:

You have to do work on each client
It can affect network performance
If the client is connected via WAN, it has a cached CDS server entry, which is

wiped out and must be manually added again

If only a minor change was made to CDS server information, you may decide to
accept some infrequent timeouts on client machines for a couple of hours until

Using and Administering DCE

they are refreshed by subsequent client requests. Before you wipe out the
whole cache you should consider forcing updates from the CDS server for
specific CDS entries such as:

rpccp show entry /.:/<some_entry name> -u

The rest of this section covers the following topics:
1. An InfoExplorer excerpt about expiration age
2. A procedure to wipe out the CDS clerk cache
3. A procedure that wipes out caches, credentials, and endpoint maps
4

. A procedure to define the cached server entry on a WAN connected client
Expiration Age of CDS Clerk Cache Entries:

It is the responsibility of the client side to have updated CDS information. It is
the role of the client program to ensure that the information which it receives
from the CDS is current enough for its uses. The client program does not have
to do anything, the RPC runtime takes care of checking the age of the cache
entry that is being queried and triggers a refresh from the CDS server, if
necessary. However, the application can set an expiration age. This has to be
used with care, because frequent refreshes may affect network performance.

The following description of the rpc_ns_mgmt_set_exp_age() routine is an
excerpt out of InfoExplorer:

When an application begins running, the RPC runtime specifies a random value
of between 8 and 12 hours as the default expiration age. The default is global to
the application. Normally, avoid using this routine; instead, rely on the default
expiration age. The RPC NSI next operations, which read data from name
service attributes, use an expiration age. A next operation normally starts by
looking for a local copy of the attribute data that an application requests. In the
absence of a local copy, the next operation creates one with fresh attribute data
from the name service database. If a local copy already exists, the operation
compares its actual age to the expiration age being used by the application. If
the actual age exceeds the expiration age, the operation automatically tries to
update the local copy with fresh attribute data from the name service database.
If updating is impossible, the old local data remains in place and the next
operation fails, returning the rpc_s_name_service_unavailable status code.

Setting the expiration age to a small value causes the RPC NSI next operations
to frequently update local data for any name service attribute that your
application requests. For example, setting the expiration age to 0 (zero) forces
all next operations to update local data for the name service attribute that your
application has requested. Therefore, setting small expiration ages can create
performance problems for your application. Also, if your application is using a
remote server with the name service database, a small expiration age can
adversely affect network performance for all applications.

The cleanup_cds_cache Procedure:
Since binding handles are cached in each CDS clerk cache, we have to refresh it
on all systems, if binding handles become invalid. Otherwise we may

experience nasty timeouts. The following procedure deletes the CDS clerk
cache without interrupting DCE operation significantly:

Chapter 4. Administering DCE Cells 157

#1/bin/ksh

#cds cache cleaning.

#Shell Script to remove the local CDS cache

#(It will be recreated, when cdsadv starts again)

CDS_SERVER=NO

ps -ef | grep cdsd >/dev/null 2>81
if[$?2=0]
then
CDS_SERVER=YES
echo "Disabling CDS server and clerk”
/etc/dce.clean cds
With OSF commands:
#cdscp disable clerk # Disable clerk first. Once the server is
#cdscp disable server # gone, the clerk cannot be disable anymore
else
echo "Disabling CDS clerk”
/etc/dce.clean cdsadv
With OSF commands:
#cdscp disable clerk
fi

echo "Removing CDS clerk cache”
rm /opt/dcelocal/var/adm/directory/cds/cds_cache.*
rm /opt/dcelocal/var/adm/directory/cds/cdsclerk_*

if [$CDS_SERVER = "YES"]
then
echo "Restarting CDS server and clerk”
/etc/rc.dce cds
With OSF commands:
#cdsadv
#cdsd
else
echo "Restarting CDS advertiser (and clerk)”
/etc/rc.dce cdsadv
With OSF commands:
#cdsadv
fi

echo "CDS clerk cache is cleared "
echo "You can look at it with \"cdscp dump clerk cache\"\n"

If applications store binding information internally or have no sufficient recovery
mechanism to handle communication errors, applications may need to be
stopped and restarted. In such cases the application would not read the
refreshed CDS clerk cache and hence cleanup_cds_cache would not help.

The cleanup_cache Procedure:

This is the full cache refresh procedure. This procedure should actually only be
used in problem situations where cleanup_cds_cache does not help, for instance
when the RPC endpoint map gets corrupted on a system which is a server of any
kind.

158 Using and Administering DCE

Since cleanup_cache removes everything that DCE servers and clients need to
communicate, you must also stop and restart all DCE applications running on
that system. If DFS is running, the system must be rebooted.

The procedure first stops DFS and DCE, if they are running. Then it removes all
the caches on that system as shown in the listing below. This ensures that a
system does not use its invalid cache anymore. Under normal circumstances
CDS cache is kept while rebooting or restarting DCE. RPC end point maps and
credentials are removed upon restart of DCE after a system reboot.

#1/bin/ksh

#general cache cleaning.

#Shell Script to remove the rpc config files and the credential

#files to make sure the cache and the endpoint mapper are cleaned up.

cat << EOI

If you want to continue, you have to restart all your DCE Applications
and user have to Togin again, because this script removes all credentials
and RPC end points.

If you run DFS (client or server), you must reboot this system.

If you just want to clean the CDS clerk cache, use cleanup cds cache.
EOI
echo "Do you want to continue [y/n]: \c"

read a

if [X$a != X"y"]

then

exit 1
fi
#kill dce

/etc/dfs.clean
/etc/dce.clean

#Remove the socket files
rm /opt/dcelocal/var/rpc/socket/* >/dev/null 2>&1

#Remove the rpc config files
rm /opt/dcelocal/var/rpc/rpcdep.dat >/dev/null 2>81
rm /opt/dcelocal/var/rpc/rpcdl1b.dat >/dev/null 2>81

#Remove everyone's credentials files
rm /opt/dcelocal/var/security/creds/* >/dev/null 2>&1

#Remove everyone's cdscache files
rm /var/dce/adm/directory/cds/cds_cache.* >/dev/null 2>81
rm /var/dce/adm/directory/cds/cdsclerk_* >/dev/null 2>&1

The create_cds_entry Procedure:

When a client system cannot be reached via IP broadcasts from a CDS server or
vice versa, it cannot find a CDS server. A cached server entry must be manually
defined into the CDS clerk cache:

cdscp define cached server <ip_name> tower ncacn_ip_tcp:<ip_addr>

When you first install a DCE node which is not in the same network as the CDS
server you call mkdce with the -c flag. This instructs mkdce to setup a cdscp

Chapter 4. Administering DCE Cells 159

160

defined cached server call and to put this call also into the /etc/rc.dce startup
file.

The information is stored in the clerk cache. So when you wipe the cache out,
you need to redefine the cached server. The following shell script
create_cds_entry does that for you:

#1/bin/ksh
if ["$1" 1= "-c"]
then
echo "\nUsage: create_cds_entry -c <CDS_server_name>\n"

echo "Purpose: Sets a cached CDS server for the local CDS clerk\n"
exit
fi

cat << EOI

Since CDS is not working you must be able find the security
server via the pe_site file.

EOI

echo "Is /etc/dce/security/pe_site up to date? [y/n]: \c"
read a

if [X$a 1= X"y"]

then
echo "\n>> Please edit /etc/dce/security/pe site first;"
echo ".. chpesite does not work at this point, it needs a working CDS.”
exit 1

fi

ip="host $2 | cut -f3 -d' '°

BIND PE _SITE=1; export BIND PE SITE

cdscp define cached server $2 tower ncacn_ip_tcp:$ip
unset BIND PE SITE

Then you need to edit the /etc/rc.dce file, look for the line that contains the
CACHE_SRYV environment variable, and enter the cdscp defined cached server
command there.

4.4.5.2 Managing the DFS Client Cache

This topic is comprehensively described in the ITSO publication The Distributed
File System (DFS) for AIX/6000 and in InfoExplorer. The cm command suite is
used to manage the DFS client's cache manager. This section should serve as a
short reminder of some of the most important cm subcommands:

cm flush Forces the cache manager to discard data cached from
specified files or directories. Affects only data which has not
been altered. Data that needs to be stored back to the
server remains in the cache.

cm flushfileset Forces the cache manager to discard data cached from
filesets that contain specified files or directories. Again,
affects only unaltered data.

cm lsstores Lists filesets that contain data the cache manager cannot
write back to a file server machine.
cm resetstores Cancels attempts by the cache manager to contact

unavailable file server machines and discards all data the
cache manager cannot store to such machines. You should
run cm 1sstores first to check which filesets are concerned.

Using and Administering DCE

cm checkfilesets Forces the cache manager to update fileset-related
information. It forces the cache manager to fetch the most
recent information available about a fileset from the FLDB.

cm setpreferences Sets the cache manager's preferences for file server
machines.

There is no command to flush the entire cache. Should this ever be necessary,
do not just delete the files as with CDS, but remove and reconfigure the DFS
client.

4.5 Administering Users and Groups

User management encompasses tasks such as adding, modifying, deleting
users, accounts, and groups in the DCE security registry. Current DCE
implementations lack tools to perform these in a large scale. Managing single
users is nicely supported within SMIT. Easy to use menus allow one to add,
modify, and delete users, accounts, groups and organizations. The second
problem after mass DCE user management is that DCE login is not integrated
into AIX login. This means the user has to login to AIX first and then to DCE.
The administrator has to define all AIX/DCE users in at least one AlIX local
system and in the DCE registry.

Tools for mass user management and login integration are required to deploy
DCE on a large scale. We can propose a solution for both issues:

In 5.5, “User (and ACL) Management” on page 242 we describe a set of
tools for user management which we have designhed and implemented during
this project

In 5.4, “Single Login/6000” on page 235 we give a short summary description
of an integrated login package available from the IBM lab in Boeblingen,
Germany

The user management tools are designed to also manage user related ACLs.
This is important to support tasks such as migration from other environments to
DCE or splitting/joining of existing DCE cells.

This section focuses on the use of the user management tools and explains how
to configure Single Login/6000:

1. Adding users

. Modifying users

. Moving users

. Aliases

2
3
4. Deleting users
5
6. A test with adding 32,000 users
7

. Configuring Single Login/6000

The concepts and structure of the tools as well as the details about the
commands are described in 5.5, “User (and ACL) Management” on page 242.

Make sure the management tools have been installed. See Appendix A,
“Installing the Tools” on page 277 for instructions how to install the tools.

Chapter 4. Administering DCE Cells 161

Assume we have a directory /umgt which is to hold our user information
database and you have restored the shell script into this directory. In order to
use the commands correctly you need to change into that directory and make
sure your PATH variable contains the current directory:

cd /umgt
PATH=$PATH::
echo "PATH=\$PATH::" >> Jetc/environment

4.5.1 Adding Users

The concepts and the syntax of the commands used to add new users is
described in 5.5.4, “Adding Users: add_users” on page 258 and 5.5.5, “Enabling
Users for DCE Login: rgy_enable_users” on page 263.
This section gives a few examples of the usage:

1. Create users from list of user names

2. Create a user with specific UID

3. Create a user for Single Login/6000

—— DCE account attributes

We define attributes in the DCE registry for each user such as the home
directory and the initial program. However, as long as the user needs to
have a local /etc/passwd entry and is required to login there first, these
attributes have no effect. The local attributes are used.

Defining the home directory in DFS is another problem, because at AIX login
time the user does not have their credentials yet. See 4.2.4, “Defining Home
Directories in DFS” on page 115 for instructions on how to define the home
directory in DFS.

These issues are solved with Single Login/6000. See 5.4, “Single Login/6000”
on page 235 for more details.

Adding Users from a List of Names:

This is an example where the DCE registry automatically assigns the UIDs. It
takes the next available UIDs.

1. Create a file with user names:
echo "barry brice ben” > /tmp/users

2. Call add_users: to create the principals and a default accounts which will not
be enabled for login yet
cd /umgt
add_users /tmp/users

Checking to be sure you are cell_admin ...
You must login as cell _admin first ... sorry

3. Login as cell_admin and try again:

162 Using and Administering DCE

add_users /tmp/users
Checking to be sure you are cell _admin ...ok
Creating a candidate Tist of users to add ...

Checking barry ...ok (file will be created)

Checking brice ...ok (file will be created)

Checking ben ...ok (file will be created)
You are going to add 3 users

Starting to work with rgy edit ...

Please provide your password:

Adding principal barry ...ok
Adding principal brice ...ok
Adding principal ben ...ok

*** Ended to add users in DCE

. Check the principals that were created:

#rgy edit -p -v | grep "b

bin 3
barry 349
brice 350
ben 351

. Check the accounts that were created:

#rgy edit -a -v | grep "b

bin [bin none]:*:3:3::/bin::
barry [none none]:*:349:12::/::
brice [none none]:*:350:12::/::
ben [none none]:*:351:12::/::

. The UDF of user barry looks as follows:

cat dce_users/barry

- 11Irrnrrirrirl Do NOT change manually the first part 111
--- Principal info:
uuid=0000015d-92c2-2e78-a100-02608c2fff91
uid=349

groups=none

--- Account info:

group=none

org=none

valid=NO

gecos=Account for barry
homedir=/:/dfs_home/barry

size=

initprog=/bin/ksh

expir_date=95/09/15

good_since=94/09/15

--- ACL_INI info:

--- ACL info:

--- State and Tast access:
state=SUSPENDED

last time_access=Thu Sep 15 13:31:04 CDT 1994 op=add_users
#11

Chapter 4. Administering DCE Cells

163

164

#11 Edit below (values that could not be applied):
#!! Edit below (values to be applied next time):

At this point the user is added but not enabled for DCE login, his state is
SUSPENDED and the account invalid. In this state we could now change the
parameters. Let's do it and change for example the GECOS field which was
generated per default into Barry White, Dept 99S.

echo "ADD_gecos=Barry White, Dept 99S" >> dce_users/barry
cat dce_users barry

. Enable all three users for DCE login:

rgy_enable_users /tmp/users
Checking to be sure you are cell _admin ...ok
Creating a candidate list of users to rgy enable ...
Checking barry ...ok
Checking brice ...ok
Checking ben ...ok

You are going to rgy enable 3 users
Starting to work with rgy_edit ...

barry brice ben
RGY-enabling principal barry ... ok
RGY-enabling principal brice ... ok
RGY-enabling principal ben ... ok

*** Ended to rgy_enable users in DCE

. List the DCE accounts:

#rgy edit -a -v | grep "b

bin [bin none]:*:3:3::/bin::

barry [none none]:*:349:12:Barry White, Dept 99S:/:/dfs_home/barry:/bin/ksh:
brice [none none]:*:350:12:Account for brice:/:/dfs_home/brice:/bin/ksh:

ben [none none]:*:351:12:Account for ben:/:/dfs_home/ben:/bin/ksh:

All the account information is now filled in. Note the GECOS field for user
barry.

. List the UDF file for barry again, his GECOS field is now changed and the

ADD_gecos has disappeared. The state is now RGY_ENABLED and his
account valid:

cat dce_users/barry

-- 1HLLLrrnrnirrr po NOT change manually the first part 11111
--- Principal info:
uuid=0000015d-92c2-2e78-a100-02608c2fff91
uid=349

groups= none

--- Account info:

group=none

org=none

valid=YES

gecos=Barry White, Dept 99S
homedir=/:/dfs_home/barry

size=

initprog=/bin/ksh

expir_date=95/09/15

good_since=94/09/15

--- ACL_INI info:

Using and Administering DCE

--- ACL info:

--- State and Tast access:

state=RGY_ENABLED

last time_access=Thu Sep 15 13:52:15 CDT 1994 op=rgy enable users
#11

#11 Edit below (values that could not be applied):
Create a User with a Specific User ID:

To accomplish this task we first create an empty UDF, fill in the desired values
and then run the add_users command. This is also the procedure you may want
to use, when you create a new tool to migrate users from an existing base.

Let us assume we want to add a user felix whose UID should be 1001, because
he is defined as such in AIX:

1. Create an empty UDF:
CR_EMTPY_UDF

Usage: CR_EMPTY UDF udf-file udf-dir
CR_EMPTY_UDF -h

udf-file = User definition file to read (=username)
udf-dir = Repository name
-h = Display more information

CR_EMTPY_UDF felix dce_users
2. Add the instruction ADD_uid to the UDF and check UDF:

echo "ADD_uid=1001" >> dce_users/felix
cat dce users/felix

3. Create the DCE principal:

add_users felix

Checking to be sure you are cell _admin ...ok

Creating a candidate Tist of users to add ...
Checking felix ...ok

You are going to add 1 users
Starting to work with rgy edit ...

Please provide your password:

Adding principal felix ...ok

*** Ended to add users in DCE
4. Check the UDF again:
cat dce_users/felix

The UID is set to 1001, and default account values like homedir have now
been added to the UDF but not to the registry yet. Before you enable the
account you could now change other account attributes.

5. You can also check the DCE registry definition for the new principal and
account with:

Chapter 4. Administering DCE Cells 165

166

rgy edit -p -v felix | sed /Current/d

felix 1001
rgy edit -a -v felix | sed /Current/d

felix [none none]:*:1001:12::/::

6. Enable the user for DCE login:

rgy_enable users felix

Checking to be sure you are cell _admin ...ok

Creating a candidate Tist of users to rgy enable ...
Checking felix ...ok

You are going to rgy enable 1 users
Starting to work with rgy edit ...

felix
RGY-enabling principal felix ...ok

*** Ended to rgy_enable users in DCE
7. Check the DCE account:

rgy edit -a -v felix | sed /Current/d
felix [none none] :*:1001:12:Account for felix:/:/dfs_home/felix:/bin/ksh:

8. Also check the UDF file. The account is valid now and its state is
RGY_ENABLED.

Adding Users for Single Login/6000:

Single Login/6000 supports a structured user namespace. Departments or
regional offices can be defined. If you decide to implement departments, then
each DCE node needs to be defined into a department. When users are added,
you need to specify to which department they belong. They can then login to
any machine in their department. If they are defined as global users, they can
even login on any machine in the cell.

Single Login/6000 users have a CDS entry to control their current location and
number of logins. The Single Login/6000 CDS namespace is also structured
according to the departments. Each department has a CDS directory and its
users have a CDS object in that directory. The DCE principal name reflects this
structure, it is a qualified name consisting of the department name and the user
name.

See also 4.5.6, “Configuring Single Login/6000” on page 180 on how to configure
Single Login/6000.

So for instance user sal in the regional office Munich would have the principal
name munich/sal. The UDF supports this structure. Although you could define
another user sal in Frankfurt, we do not recommend this, if sal is a global user
who is allowed to login at any location. Since Single Login/6000 creates an
/etc/passwd file entry on the system at which the user logs in, frankfurt/sal and
munich/sal would both become sal on that system.

Let us add user sal in regional office munich:

1. Add the user:

Using and Administering DCE

4.5.2 Modifying

add_users munich/sal
Checking to be sure you are cell _admin ...ok
Creating a candidate Tist of users to add ...
Checking munich/sal ...ok (file will be created)

You are going to add 1 users
Starting to work with rgy edit ...

Please provide your password:

Adding principal munich/sal ...ok

*** Ended to add users in DCE

2. List his UDF. Note that his filename is munich%sal. This is to avoid
subdirectories in the repository:

cat dce_users/munich%sal

-- 10NNt po NOT change manually the first part 11111
--- Principal info:
uuid=00000161-e86c-2e79-a100-02608c2fff91l
uid=353

groups=none

--- Account info:

group=none

org=none

valid=NO

gecos=Account for munich%sal
homedir=/:/dfs_home/munich/sal

size=

initprog=/bin/ksh

expir_date=95/09/16

good_since=94/09/16

--- ACL_INI info:

--- ACL info:

--- State and last access:
state=SUSPENDED

Tast_time_access=Fri Sep 16 13:48:18 CDT 1994 op=add_users
#1!

#11 Edit below (values that could not be applied):
#!1 Edit below (values to be applied next time):

3. Use the rgy_enable_user command on the user. The rest works the same as
for the other users without department names

The DFS home directory also reflects the department structure. You have to
create the directories accordingly.

See 4.5.6.5, “Configuring Single Login/6000 Users” on page 186 on how you
configure this user as a Single Login/6000 user.

Users

Modifying users means changing some of their definitions in an already existing
account. For this purpose we have to bring the user into the SUSPENDED state,
to modify their attributes. Suspending a user can be done from any of the
states: RGY_ENABLED, DFS_ENABLED, or FULL_ENABLED.

We want to look at two examples

Chapter 4. Administering DCE Cells 167

168

1.

2.

Changing the primary group of user barry

This could have been done right between the add_user and rgy_enable steps
as well.

Adding ACLs for user felix's DFS home directory

This step does not require to suspend users first.

Changing the Primary Group of a User:

In order to assign user barry a new primary group, g7, we must perform the
following steps

1.

Check the DCE account information; the primary group is none:

rgy_edit -a -v barry | sed /Current/d
barry [none none]:*:349:110:Barry White, Dept 99S:/:/dfs_home/barry:/bin/ksh:

Suspend user barry:

susp_users barry

Checking to be sure you are cell _admin ...ok

Creating a candidate Tist of users to suspend ...
Checking barry ...ok

You are going to suspend 1 users
Starting to work with rgy edit ...

Suspending account barry ...ok

*** Ended to suspend users in DCE

Add the necessary instructions into his UDF:

echo "ADD_newgrp=g7" >> dce_users/barry

If you had to do this for multiple users, you can write a short for loop:

for user in “cat /tmp/users™; do \
echo "ADD newgrp=g7" >> dce_users/$user; done

Enable user barry again:

rgy_enable_users barry

Checking to be sure you are cell _admin ...ok

Creating a candidate list of users to rgy enable ...
Checking barry ...ok

You are going to rgy enable 1 users
Starting to work with rgy _edit ...

RGY-enabling principal barry ...ok

*** Ended to rgy_enable users in DCE
Check the DCE account information:

rgy edit -a -v barry | sed /Current/d
barry [g7 none]:*:349:110:Barry White, Dept 99S:/:/dfs_home/barry:/bin/ksh:

Check the UDF and the principal definition of barry:

Using and Administering DCE

rgy edit -p
rgy edit=> v barry -m

Member of 2 groups:

none, g7

rgy _edit=> q
cat dce users/barry
--- Principal info:
uuid=0000015d-92c2-2e78-a100-02608c2fff91
uid=349
groups=none g7

barry was a member in the group none before, which was his primary group.
Adding a new primary group does not delete his membership in group none.
In order to achieve that, we need the instruction DEL_groups=none. We could
have specified this in the same step where we added the instruction
ADD_newgrp=g7

susp_users barry
echo "DEL_groups=none" >> dce_users/barry
rgy_enable users barry
rgy edit -p
rgy edit=> v barry -m

Member of 1 groups:

g7

rgy _edit=> q
cat dce users/barry
- 11Irrnrrirrirl Do NOT change manually the first part 111
--- Principal info:
uuid=0000015d-92c2-2e78-a100-02608c2fff91
uid=349
groups= g7

Creating DFS ACLs for a User 's Home Directory:

We must add ADD_ACL_INI instructions in the UDF. Since many users might start
off with the same set of ACLs for their home directory and many of them would
never change them thereafter, the same set of instructions would be added to
many UDFs with a for loop.

In order for this step to succeed, the DFS directory must exist. However, if it
does not exist, an error message appears and the ADD_ACL_INI instructions
remain in the UDF.

This step would typically be executed during a migration from NFS/NIS or the
splitting/joining of a cell.
1. Preparation:

The principal must be added and the account must be in the RGY_ENABLED
state. Make sure the directory exists, is accessible, and belongs to the
correct principal. Finally you should be logged in as cell_admin.

However, dfs_enable users will check all these prerequisites and fail with an
appropriate message, if something is wrong.

2. Add all the ADD_ACL_INI instructions to the UDF(s):

Chapter 4. Administering DCE Cells 169

170

cat << EOI >> dce_users/barry

ADD_ACL INI=dfs#/:/dfs_home/barry#mask obj:r-x---
ADD_ACL_INI=dfs#/:/dfs_home/barry#user_obj:rwxcid
ADD_ACL INI=dfs#/:/dfs_home/barry#group obj:rwx---
ADD_ACL_INI=dfs#/:/dfs_home/barry#other_obj:r-x---
ADD_ACL_INI_0C=dfs#/:/dfs_home/barry#mask obj:r-x---
ADD_ACL_INI_OC=dfs#/:/dfs_home/barry#user_obj:rwxcid
ADD_ACL_INI_0C=dfs#/:/dfs_home/barry#group_obj:rwx---
ADD_ACL_INI_OC=dfs#/:/dfs_home/barry#other_obj:r-x---
ADD_ACL_INI_CC=dfs#/:/dfs_home/barry#mask obj:r-x---
ADD_ACL_INI_CC=dfs#/:/dfs_home/barry#user_obj:rwxcid
ADD_ACL_INI_CC=dfs#/:/dfs_home/barry#group_obj:rwx---
ADD_ACL_INI_CC=dfs#/:/dfs_home/barry#other_obj:r-x---
EOI

3. Set these ACLs which also contain the initial object and container creation
ACLs:

dfs_enable users barry

Checking to be sure you are cell_admin ...ok

Creating a candidate Tist of users to dfs_enable ...
Checking barry ...ok

You are going to dfs_enable 1 users
Starting to work with rgy edit ...

barry
DFS-enabling principal barry ...ok

*** Ended to dfs_enable users in DCE

The same ADD_ACL_INI instructions would be used to change any of the existing
ACL definitions. They would simply be overwritten. You are not limited to
mask_obj, user_obj, group_obj, and other_obj. You could for instance also give
the group g99 access to the home directory users with the following set of
entries:

ADD_ACL_INI=dfs#/:/dfs_home/barry#group:9g99: rwx---
ADD_ACL_INI OC=dfs#/:/dfs_home/barry#group:g99:rwx---
ADD_ACL_INI_CC=dfs#/:/dfs_home/barry#group:999: rwx---

With instructions like DEL_ACL_INI some of these entries can be deleted. The
ACLs for owner, group, and others can cannot be deleted, though.

Now how do ACL_INI entries differ from the other category of ACL entries in the
UDF?

The ACL_INI entries are related to a certain object and define all permissions for
that object. The owner of the UDF that contains these object entries is the owner
of the object. Thus, if the user is deleted, the object will probably also be
removed by the administrator later on. The other type of ACL entries in the
UDFs pull all permissions together which a specific user has on CDS and DFS
objects. This makes it possible to remove a user or group with their specific
ACL defined anywhere.

To define this other type of ACLs you follow the same steps as outlined for the
ACL_INI entries. The account has to be in state DFS_ENABLED and the
procedure to be used is acl_enable_users.

Using and Administering DCE

4.5.3 Deleting or Moving Users

Deleting an account involves suspending it and then actually removing it
Removing means first deleting all the ACL entries and group memberships that
exist for the user and eventually remove it from the registry. The UDF will be
copied to the cemetery directory. This is what the delete_users procedure does.

The objects that the deleted user owned are not automatically deleted, so now is
the last chance, for instance, to backup the DFS files. The administrator can
then remove these objects.

Since the UDF file is still around and reflects the last state and set of definitions
the user had in this cell, the UDF can be used to redefine the user in another
cell. So, this procedure can be used to split cells or to join cells.

Let us assume we want to delete all users that have ever been defined with our
tools, which means users with a UDF in directory dce_users.

1. First suspend the users. This will set the account to invalid, and users
cannot not login anymore. Already logged in users are not affected, as long
as their ticket is valid:

susp_users all
Checking to be sure you are cell_admin ...ok
Creating a candidate list of users to suspend ...

You are going to suspend 5 users
Starting to work with rgy edit ...

Suspending account ben ...ok

Suspending account brice ...ok

Suspending account chuck ...ok

Suspending account felix ...ok

Suspending account kurt8 ...failed (Account does not exist)

*** Ended to suspend users in DCE

Apparently there was a UDF in dce_users for which no user exists
(anymore). Nevertheless its state will changed to SUSPENDED, and in the
next step it will be deleted.

2. Then delete all users:
Checking to be sure you are cell _admin ...ok
Creating a candidate 1ist of users to delete ...

You are going to delete 6 users
Starting to work with rgy edit ...

Deleting barry ...ACLs...Principal... ok

Deleting ben ...ACLs...Principal... ok

Deleting brice ...ACLs...Principal... ok

Deleting chuck ...ACLs...Principal... ok

Deleting felix ...ACLs...Principal... ok

Deleting kurt8 ...ACLs...Principal... failed (Account does not exist)

*** Ended to delete users in DCE

3. The files are now in directory cemetary_users:

Chapter 4. Administering DCE Cells 171

cat dce_users/ben
cat: 0652-050 Cannot open dce users/ben.
cat cemetary_users/ben

PIPEEEEEEIEEEl Do NOT change manually the first part 11111
--- Principal info:
uuid=0000015f-92d4-2e78-a100-02608c2fff91
uid=351
groups=none
--- Account info:
group=none
org=none
valid=NO
gecos=Account for ben
homedir=/:/dfs_home/ben
size=
initprog=/bin/ksh
expir_date=95/09/16
good_since=94/09/16
--- ACL_INI info:
--- ACL info:
--- State and Tast access:
state=DELETED
Tast_time_access=Fri Sep 16 11:55:51 CDT 1994 op=del_users
#11

#!! Edit below (values that could not be applied):
#11 Edit below (values to be applied next time):
4. The ACLs and principals are deleted.

rgy edit -p -v ben
Current site is: registry server at /.../itsc.austin.ibm.com/subsys/dce/sec/master
?(rgy_edit) Cannot retrieve entry for ben - Entry not found (Registry ...

45.4 Users Aliases

172

Users can have aliases. In fact, you create a new principal name for the same
UID and UUID. For the alias name you can define a new account with new
attributes such as a new primary group and/or other group memberships.

Let us create an alias sal for the existing principal pier

rgy edit

Current site is: registry server at /.../itsc/subsys/dce/sec/master
rgy edit=> do p

Domain changed to: principal

v pier -f
pier 107
Uuid: 0000006b-bc86-2def-b300-10005a44165

Primary: pr Reserved: --
Quota: unlimited

rgy_edit=> add -al

Add Principal=> Enter name: sal

Enter UNIX number: (auto assign) 107

Enter full name: ()

Enter object creation quota: (unlimited)

rgy_edit=> v sal -f

sal 107
Uuid: 0000006b-bc86-2def-b300-10005a4f4165
Primary: al Reserved: --

Using and Administering DCE

Quota: unlimited
rgy_edit=>

As you can see once the principal is created, it has the same user identifier
(UID) number and the same universal user identifier (UUID). The user now can
be added as an account with a different group and organization. So, when user
pier logs in as sal, he has other privileges than when he logs in with his origina
account.

User pier is member of the group staff and the organization itsc:

rgy edit

rgy _edit=> rgy edit=> view pier
pier [staff itsc]:*:107:5::/::
rgy_edit=>

User sal can now be added as a member of another group and/or organization:

rgy edit=> add sal -g dev -0 itsc -pw xyz -mp klr
rgy edit=> view sal

sal [dev itsc]:*:107:111::/::

rgy_edit=>

The only difference is in the group identifier number (5 for pier; 111 for sal). Now
modify an ACL for the object /.:/fs:

acl edit -e /.:/fs
sec_acl_edit> m user:pier:r----
sec_acl_edit> m user:sal:rw---
sec_acl _edit> 1

SEC_ACL for /.:/fs:

Default cell = /.../itsc
unauthenticated:r--t-
user:cell_admin:rwdtc
user:pier:rw---
group:subsys/dce/cds-admin:rwdtc
group:subsys/dce/cds-server:rwdtc
group:subsys/dce/dfs-fs-servers:rwdtc
group:subsys/dce/dfs-admin:rwdtc
any_other:r--t-

sec_acl_edit>

Since pier and sal are the same principal, the ACL does not reflect both names
but only the last change, which was for sal. Different access permissions for the
two accounts can only be achieved via group memberships. Add an ACL entry
for the two groups where the users sal and pier belong:

acl_edit -e /.:/fs
sec_acl_edit> m group:staff:rw---
sec_acl_edit> m group:dev:r----
sec_acl_edit> 1

SEC_ACL for /.:/fs:

Default cell = /.../itsc
unauthenticated:r--t-
user:cell_admin:rwdtc

user:pier:rw---
group:subsys/dce/cds-admin:rwdtc
group:subsys/dce/cds-server:rwdtc
group:subsys/dce/dfs-fs-servers:rwdtc
group:subsys/dce/dfs-admin:rwdtc

Chapter 4. Administering DCE Cells 173

group:staff:rw---
group:dev:r----
any_other:r--t-
sec_acl_edit>

The group staff has read and write permissions while the group dev has only
read permission. When the user is logged in with the account pier, it can access
the object /.:/fs for read and write, because it belongs to the group staff. When
he is logged in as account sal, he has only read access to the same object,
because the group he belongs to has only read permission.

455 A Test with Adding 32,000 Users

174

The purpose of this section is to describe how our scripts can be used and what
experiences we had when we added thousands of users into the DCE security
registry.

4.5.5.1 Goals and Results

In this task we added 32,908 users. The reason we decided to add so many
users was because we wanted to reach the Maximum possible UID: 32767 in the
registry and see what kind of problems we would find and how we would fix
them. This limit is defined in the POSIX standard and is defined as the least
common denominator for the different UNIX implementations. Some UNIX
implementations use a signhed 2-byte integer for the UID.

By adding so many users at once we expected to get a good feeling on how the
registry database and related programs such as dce_login behave. In a few
words:

The registry works very well
We encountered a few problems, which will be discussed
The overall performance was very good in scenario 1

When you plan to add so many users, the first thing to do is to extend the
default ticket lifetime

In scenario 1, to add a user took four seconds on average

4.5.5.2 Extending cell_admin 's Ticket Lifetime
Extension of the ticket lifetime can be accomplished in several ways, one is
using SMIT:

smitty dce ->
DCE Security & Users Administration ->
Registry Policies and Properties ->
Authenticated Policies and Properties

and change the following fields from 8h to 1w

DEFAULT ticket Tifetime (in hours) [1w]
MAXIMUM ticket Tifetime (in hours) [[1w]]

If you work on another system and SMIT is not available, use the rgy_edit
command as follows:

1. Login as cell_admin

2. Check the current ticket lifetime:

Using and Administering DCE

k1ist cell_admin

3. Call rgy_edit to change the lifetime:

$ rgy edit
Current site is: registry server at /.../itsc.austin.ibm.com/subsys/dce/sec/master
rgy_edit=> pro
Properties:

Properties for Registry at: /.../itsc.austin.ibm.com

Registry is NOT read-only

Certificates to this server may be generated at any site.

Encrypted passwords are hidden

Default certificate 1ifetime 10h
Do you wish to make changes [y/n]? (n) y

Default certificate lifetime (hours): (10h) 168
rgy _edit=> au
Authentication Policy:
Max certificate Tifetime: 1d
Max renewable lifetime: 4w
Do you wish to make changes [y/n]? (n) y
Enter maximum certificate lifetime in hours or ' forever': (1d) 168
Enter maximum certificate-renewable lifetime in hours or ' forever': (4w)
Do you wish to make changes [y/n]? (n)
rgy edit=> quit

4. Logout from DCE with the exit command and login again with the dce_Tlogin
command. Running the kinit command would not do the job. You must
exit from the current session and dce Togin again, if you want to renew the
ticket with the current extended lifetime.

5. Check the current ticket lifetime again. The lifetime has been extended to 1
week.

date
Wed Jun 1 08:31:13 CDT 1994
klist

4.5.5.3 Running the add_users Procedure
The add_users procedure is fully described in 5.5.4, “Adding Users: add_users”
on page 258

In order for our test to create 33,000 user names, we used the dictionary file
/usr/dict/words which has more than 24,000 entries and created the file
/tmp/words. Then we added the remaining 8800 by duplicating and appending a
"z" to as many words from the same file. We have used roughly the same
method as the Center for Information Technology Integration (CITI) at the
University of Michigan to add 50,200 entries in the DCE Namespace.

We called our script:

add_users /tmp/words

Chapter 4. Administering DCE Cells 175

176

Our add_users script stopped four times for different reasons, some of these
were beginners' problems, but we will still share them with the reader.

4.5.5.4 The First Problem: /var/dce File System Full
The first time it stopped, was because the /var/dce file system reached the limit.
The last successful entry was:

rgy edit -v -p
dropout 7002
klist dropout

Then it started to produce error messages for further entries like the following
one:

?(rgy_edit) Unable to contact the registry - Registry server unavailable
(Registry Edit Kernel) (dce / sad)
drosophila 84

The first entry added by the add_users script was:

rgy edit -v -p
AAA 123
klist AAA

The 6879 entries we just added plus the initial 27 entries makes a total of 6906
entries.

The /var/dce filesystem was 20MB and we extended it to 60MB. If we presume
that all the other files and directories in the /var/dce directory did not grow
during this time, we can conclude, that a default entry for a user account in the
registry database is almost 1K bytes.

The elapsed time between the first and the last user creation can be derived by
comparing the Good since date that the k1ist command delivers for the first and
the last user. So it took about four seconds per user creation.

The following is a small caveat that shows how the files grow and how the
security registry works.

Management of the Security Registry Files:

The file that initially grows in the /var/dce/security/rgy_data directory is the
update_log file. The other files are only updated, when secd checkpoints its
in-memory registry to disk. The disk files that compose the security registry are
acct, acl, group, org, persons, replicas, rgy, rgy_state.

Using and Administering DCE

/

I_I_

/varldcie/security
[|
adm creds rgy_data !
|
[I [I I I
acct PEISON cvviie eeeeneenn update log
secd checkpoint i
sec_admin (mas) :

/

fvar/dce/security
I | | ! |
adm creds rgy_data
l
! I | ! I I
acct petson e eveseesese asverns update_log
—

Figure 29. Security Registry Files

secd keeps and updates its database in memory. Changes are logged into the
update_log file on disk. The database files are checkpointed from memory to
disk every two hours and the update_log is adjusted. In case of a system crash
changes since the last checkpoint could be replayed.

You can either await the checkpoint due every two hours for the disk files to be
updated or you can run sec_admin with the master_key subcommand to force the
update:

sec_admin
Default replica: /.../itsc/subsys/dce/sec/master
Default cell: /.../itsc

sec_admin> mas
sec_admin> quit
bye.

Taking secd into maintenance mode has the same effect.

4.5.5.5 The Second Problem: The Ticket Lifetime

In order to restart the add_users at the point where it failed before, we had to
remove the already successfully added entries from the users file. The second
time the procedure then stopped because the ticket lifetime expired on the run.
It was set to its default of eight hours. So the script ended after having added
another 7481 users (taking four seconds each) with the following error message:

?(rgy_edit) Warning - binding is not authenticated - Cant establish
authentication to registry (Registry Edit Kernel) (dce / sad)

Domain changed to: principal

?(rgy_edit) Unable to add principal "Mississippi” - Principal quota
exhausted (dce / sec)

Chapter 4. Administering DCE Cells 177

178

Some additional information which shows with which UIDs this step began and
ended, as well as how long it took are shown here:

rgy edit -v -p

drosophila 7145
mission 14626
#

klist drosophila
Good since date: 1994/05/29.11:59
klist mission

It is unclear why from the first stop and the second one the rgy_edit command
left out 142 UIDs and started to add the next entry at 7145 instead of 7003. Those
UIDs left out from 7003 to 7144 were reused when at the end the rgy edit arrived
at the hard limit of 32,767 accounts. We will describe this later in the discussion
of the fourth problem encountered.

We increased the ticket lifetime to 1 week as explained in 4.5.5.2, “Extending
cell_admin's Ticket Lifetime” on page 174.

4.5.5.6 The Third Problem: Lack of Paging Space
The third time the script stopped because of lack of paging space. During the
third run we got the message:

INIT: Paging space Tow
We increased the paging space from 80MB to 108MB

Tsps -a

Page Space Physical Volume Volume Group Size %Used Active Auto
Type

hd61 hdiskl rootvg 40MB 83 yes yes lv
hd6 hdisk0 rootvg 40MB 99 yes yes lv

chps -s'5" hd6l
chps -s'2" hd6

lsps -a

Page Space Physical Volume Volume Group Size %Used Active Auto
Type

hd61 hdiskl rootvg 60MB 58 yes yes lv
hd6 hdisk0 rootvg 48MB 85 yes yes lv

Since we increased the paging space right in time before the system started to
kill processes, we could restart the procedure. After a few more (this time
unattended) hours the system started to give the message INIT: Paging space
low again on the console and a ps command showed that several kproc
processes were in suspended (S) state :
ps

PID TTY STAT TIME COMMAND

0 -S 1:29 swapper
1 -5 3:18 /etc/init
514 - R 904:39 kproc
771 -S 6:39 kproc
1028 -S 0:00 kproc
1352 -S 0:17 /usr/sbin/snmpd
1614 -S 0:06 /etc/cron

Using and Administering DCE

2150 -S 0:00 kproc

#
After this the rgy_edit started to display the following messages:

Current site is: registry server at
/.../itsc.austin.ibm.com/subsys/dce/sec/master
Domain changed to: account

bye.

cyclotronz 0

Cygnusz -0.00390625

cylinderz -0.00390625

cylindricz -0.00390625

Unfortunately not even the shutdown was able to run anymore, so we had to do
it the hard way by pushing the reset button of the system. Once the system was
up and running again we increased the paging space to 128MB.

4.5.5.7 The Fourth Problem: The Maximum Allowable User ID

So we started the script again and the last problem was when we reached 32,767
accounts. After having reached that limit rgy edit started to look for unused
UIDs in the range of 0..32767. It used what was left over between 7003 and 7144
from the first and second trial. After everything was exhausted it started to
display the following error message:

Current site is: registry server at
/.../itsc.austin.ibm.com/subsys/dce/sec/master

Domain changed to: principal

?(rgy_edit) Unable to add principal "floricanz” - UNIX id space for domain
has been exhausted (dce / sec)

bye.

After changing the Maximum allowable unix ids the rgy edit started to add further
accounts and reached the limit of 32,908 accounts we had set with no problems.

rgy edit
rgy_edit=> prop
Properties:

Maximum possible UID: 32767

rgy edit=> quit
#

4.5.5.8 Conclusions

All the commands like dce_Togin and rgy edit were working just fine, the
response time was really good even with so many users. The only time we
could not run dce Togin or rgy_edit was when the /var/dce file system and the
paging file system were running out of space. In all other cases we had no
problems.

Chapter 4. Administering DCE Cells 179

4.5.6 Configuring Single Login/6000

180

Single Login/6000 is a program offering for AIX DCE. It implements a user login
procedure that integrates the standard AIX login and the DCE standard

dce Togin. See 5.4, “Single Login/6000” on page 235 for product information and
distribution information.

This section provides the configuration steps and practical hints based on our
testing experience.

In a nutshell, Single Login/6000 provides the users with standard cell wide DCE
credentials. Based on these credentials it automatically initiates AIX personal
user attributes on the specific local system where the user chooses to login
from. As a result the user is concurrently logged in with DCE and with the local
AlX under the same UID. The user home directory can be defined to be location
independent, that is transparently accessed from any place in the cell, thanks to
the DCE/DFS filespace.

For the user administrator, user entries are to be defined only at the cell level
with no dependencies on the local AIX systems. This facilitates the management
of users as there is no need to define them locally anymore. Single Login/6000
functions take care of this. The cost of this advantage is to manage more entries
in the cell namespace for the Single Login/6000 components to work cell wide.

All the configuration operations are supported from SMIT panels associated with
Single Login/6000:
smit

-> Communications Applications and Services

->IBM Single Login / 6000
(fast_path = si_login)

This section covers the following topics:

1. Prerequisites and planning information

2. Configuring the Single Login/6000 server
Configuring a Single Login/6000 client machine
Configuring Single Login/6000 users
Release compatibility
Using Single Login/6000 as a user
User password

DFS home directory

© ©® N o o »> w0

. Password rules customization
10. Failed login and current sessions control

11. Checklist for solving access denied situations

4.5.6.1 Prerequisites and Planning Information
Before you start to configure Single Login/6000 be sure that the following
prerequisites are met:

Your DCE cell is working correctly

Using and Administering DCE

If you are using a free of charge IBM internal version from the AIXTOOLS
disk, your cellname must be in the form of an IP domain name ending in
ibm.com.

getcellname
/.../itsc.austin.ibm.com

Each Single Login/6000 user has an object in the CDS namespace that takes
up 2.1KB disk space per user. If you intend to add a lot of users, be sure the
disk space containing the directory /opt/dcelocal/var/directory/cds is large
enough.

If you decide to implement a structured namespace with departments as
outlined in 5.4, “Single Login/6000” on page 235, then each department has
its own directory in CDS. The users belonging to a certain department have
their CDS object in that directory.

If your user community is really large you might decide to replicate those
directories and move the master replica to a department CDS server,
provided that your cell core services are structured like that.

However, distributing CDS directories can be done at any time later on.

4.5.6.2 Configuring the Single Login/6000 Server
There is one machine in the cell which coordinates user login information such
as:

Number of concurrent logins allowed

Current number of logins

Locations and client machines of current logins

Whether a user is allowed to login from all departments (global user)
Number of recent failed logins

These parameters are configurable and are kept in CDS, see 4.5.6.11, “Failed
Login and Current Sessions Control” on page 192.
The task of configuring the Single Login/6000 server consists of:

1. Configuring the server process

2. Starting the server process

After having configured the server process you should follow all steps necessary
for client configuration also on the server machine.

Configuring the Server Process:

Call SMIT and follow the indicated path or call SMIT with the fastpath name:

#smit
-> Communications Applications and Services
-> IBM Single Login / 6000
-> Configure Single Login / 6000
-> Configure Single Login / 6000 server machine
(fast_path = si_cfg_server)

Chapter 4. Administering DCE Cells 181

182

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

(or null)

Configure Single Login / 6000 server machine

[Entry Fields]
Department ID to which this machine belongs? [dep99]

—

The department ID is for the Single Login/6000 client machine that is
automatically configured with the server. The server process has to run on one
machine in the cell, the clients run on each machine from which users can login.

Entering a NULL string at the request for a department name is fine, if the cell
administrator does not have to split the DCE users community into several
subarea's such as departments or branches. However, departments are useful,
if you want to distinguish between users who are allowed to login only from a
certain group of machines, the departmental machines, and others who are

allowed on all machines in the cell, the global users.

Instead of using SMIT the server can be configured by executing the

/usr/bin/mksiserver script

mksiserver dep99

Enter Your PASSWORD:dce

Enter initial PASSWORD for single/si_client:sil
Enter initial PASSWORD for single/si_server:sil

Current site is: registry server at /.../itsc.austin.ibm.

Domain changed to: principal

Current site is: registry server at /.../itsc.austin.ibm.

Domain changed to: principal
Create account for single/si_client

Current site is: registry server at /.../itsc.austin.ibm.

Domain changed to: account
Create account for single/si_server

Current site is: registry server at /.../itsc.austin.ibm.

Domain changed to: account
Create key for single/si_client

Current site is: registry server at /.../itsc.austin.ibm.

Domain changed to: account
Create key for single/si_server

Current site is: registry server at /.../itsc.austin.ibm.

Domain changed to: account
Create subsystem SI LOGIN in cds
Create ACL's for '/.:/subsys/SI _LOGIN

com/subsys/dce/sec/master

com/subsys/dce/sec/master

com/subsys/dce/sec/master

com/subsys/dce/sec/master

com/subsys/dce/sec/master

com/subsys/dce/sec/master

Create ACL's for '/.:/subsys/SI_LOGIN - initial container

Create ACL's for '/.:/subsys/SI LOGIN - initial object
- IBM Internal use only -

Single Login / 6000 - AIX/DCE integrated login

- IBM Internal use only -

Press Enter to continue

Using and Administering DCE

This mksiserver configuration command produces a set of entries in CDS, two
new entries in the security registry and two DCE keys for the authentication of
the client and server single_login processes as shown by the next three
commands :

cdsli -Rod /.:/subsys/SI_LOGIN
/.:/subsys/SI _LOGIN/configuration
/.:/subsys/SI_LOGIN/configuration/password
/.:/subsys/SI_LOGIN/server
/.:/subsys/SI_LOGIN/user

rgy edit -v | grep single
single/si_client [none none]:*:10005:12::/::
single/si_server]none none]:*:10006:12::/::

echo kt1 | rgy edit | grep single
/.../itsc.austin.ibm.com/single/si_client 1
/.../itsc.austin.ibm.com/single/si_server 1

The department name of a client machine is stored in the file
/opt/si_login/department.

$ cat /opt/si_login/department
dep99

Starting the Server Process:

The Single Login/6000 service is made of a server process
/opt/si_login/single_login_server that permanently runs for the whole cell and of
single login clients /opt/si_login/single_login launched when users login with via
Single Login/6000.

The SMIT panel for launching the server part (only on the server system) is

smit
-> Communications Applications and Services
-> IBM Single Login / 6000
-> Start Single Login / 6000
(fastpath = si_start)

Start Single Login / 6000

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]

* maximum number of concurrent dce calls? [25] #
* maximum number of concurrent threads? [25] #
Start Single Login / 6000 both +

now, on system restart or both?

— —

If you expect a lot of users to login at the exact same time you may want to
increase the number concurrent threads. However, for each thread the RPC
runtime can queue eight requests and the login procedure does not take a long
time. The worst case is the user has to login again, when the call fails because
the queue is full. If you specify both as shown above, the Single Login/6000
server is automatically started on reboot of the machine. If you start DCE
automatically, you can do the same with Single Login/6000.

Chapter 4. Administering DCE Cells 183

The following command has the same effect:
chgsi_login -U -c25 -t25 -N

The -U flag stands for up as opposed to the -D flag, which would be used to stop
the Single Login/6000 server.

The output of the execution shows :

single_login_server: Got the following bindings:

single_login_server: This is binding # O:

single_login_server: ncacn_ip_tcp:9.3.1.127[2970]
single_login_server: This is binding # 1:

single login_server: ncadg_ip udp:9.3.1.127[1185]
single_login_server: This is binding # 2:

single_login_server: ncacn_unix_stream:[/var/dce/rpc/socket/000da232-
d8ec-1df3-987d-10005aa8¢755]

single_login_server: Listening ...

The command /usr/bin/chgsi_login actually runs as a script that starts the

single_login_server process.

ps -ef | grep single
root 1554 4953

3
root 13117 1 0
n_server -c 25 -t 25

21:27:04 pts/1 0:00 grep single
21:18:13 - 0:00 /opt/si_login/single_logi

The server entries in the namespace are like these

rpccp show group /.:/subsys/SI_LOGIN/server/SINGLE_GROUP

group members:
/.../ev8.itsc.austin.ibm.com/subsys/SI_LOGIN/server/single_login_srv

#

cdscp show object /.:/subsys/SI_LOGIN/server/single login_srv

SHOW
OBJECT /.../ev8.itsc.austin.ibm.com/subsys/SI _LOGIN/server/s
ingle login_srv
AT 1994-06-06-23:13:37
RPC_ClassVersion = 0100
CDS_CTS = 1994-06-07-02:18:20.374048100/10-00-5a-a8-c7-55
CDS_UTS = 1994-06-07-02:18:21.137307100/10-00-5a-a8-c7-55
CDS_Class = RPC_Entry
CDS_ClassVersion = 1.0

CDS_Towers = :

Tower = ncacn_ip tcp:9.3.1.127[]
CDS_Towers = :

Tower = ncadg_ip udp:9.3.1.127[]

4.5.6.3 Configuring a Single Login/6000 Client Machine
Configuration of a Single Login/6000 client machine involves the following steps:

1. Configuring the department name and client password

2. Configuring an AIX global user entry
Configuring the Department Name and Client Password:

This particular step has already been done on the Single Login/6000 server
machine. So it has to be done only on all pure clients

184 Using and Administering DCE

Call SMIT and follow the indicated path or call SMIT with the fastpath name:

smit
-> Communications Applications and Services
-> IBM Single Login / 6000
-> Configure Single Login / 6000
-> Configure Single Login / 6000 client machine
(fast path = si_cfg client)

Configure Single Login / 6000 client machine

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
Department ID to which this machine belongs? [dep99]
(or null)

The action behind this panel is run by the script:

mksiclient dep99
Create key for single/si_client
Enter PASSWORD of single/si _client
secret
Current site is: registry server at /.../itsc.austin.ibm.com/subsys/dce/sec/mast
er
Domain changed to: account
Press Enter to continue

If a department name is given, this name is kept in the local file
/opt/si_login/department

Configuration of the AIX Global User Entry:

This configuration step is very much DCE independent. It configures an AlIX login
entry to which all users first login. It is an AlIX account which runs with root
authority. The initial program of this global AIX user is the Single Login/6000
client process. There is no chance for the user to get shell access with root
permissions.

Call SMIT and follow the indicated path or call SMIT with the fastpath name:

smit
-> Communications Applications and Services
-> IBM Single Login / 6000
-> Single Login / 6000 user administration
-> Create global AIX login userid
(fastpath = mksiglobal)

Chapter 4. Administering DCE Cells 185

Create global AIX login userid

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
* User NAME [dce]
HOME directory [/home/dce]

— —J

This panel runs the AIX mkuser command that creates the needed entry in the
local AIX user definition files. The associated user entry in /etc/passwd shows:

grep dce /etc/passwd
dce:1:203:200:SingleLogin/6000 global userid:/home/dce:/opt/si_Togin/single login

4.5.6.4 Defining Departments

If you choose to implement the department concept, you have to define the
departments before you can define any users. Department names are reflected
in the DCE principal names of users. So, for instance user jacques in a regional
office brussels needs to be defined as DCE pricipal brussels/jacques. Since
each user gets a CDS object in a CDS directory with the department’s name, this
CDS directory must exist first. This is what the following step does.

Call SMIT and follow the indicated path or call SMIT with the fastpath name:

smit
-> Communications Applications and Services
-> IBM Single Login / 6000
-> Single Login / 6000 user administration
-> Create department
(fastpath = mksidept)

Create department

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
* Department ID? [dep99]

— —

The following command has the same effect:
cdscp create dir /.:/subsys/SI_LOGIN/user/dep99

4.5.6.5 Configuring Single Login/6000 Users

If you choose to implement the department concept, you have to define the
departments before you can define any users. See 4.5.6.4, “Defining
Departments” on how to define departments. The user should be defined in DCE
first. For instance for user jacques in a regional office brussels you need to
define the DCE pricipal brussels/jacques. See “Adding Users for Single
Login/6000” on page 166 for an example on how to use our user management
tool with Single Login/6000 users.

Call SMIT and follow the indicated path or call SMIT with the fastpath name:

186 Using and Administering DCE

smit
-> Communications Applications and Services
-> IBM Single Login / 6000
-> Single Login / 6000 user administration
-> Create user
(fastpath = mksiuser)

Create user

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]

* user name (department/userid)? [brussels/jacques]
* max. number of logins (0..50)? [1] #
global Togin allowed? yes +

— —J

The global attribute in the user definitions specifies whether a user is allowed to
login from any machine in the cell or even from a foreign cell. If this is set to
yes, he can login from wherever he wants. If it is set to no, he can only login
from any client machine of his own department (brussels).

The following command line option adds user jim and allows him to be
concurrently logged in 5 times

mksiuser -u dep99/jim -m 5 -gyes

This is how this Single Login/6000 information is recorded for each user in an
associated object in the CDS namespace:

cdscp show object /.:/subsys/SI_LOGIN/user/dep99/jim

SHOW
OBJECT /.../itsc.austin.ibm.com/subsys/SI LOGIN/user/dep99/jim
AT 1994-06-21-10:55:21
CDS_CTS = 1994-06-21-15:54:35.701247100/10-00-5a-a8-c7-55
CDS_UTS = 1994-06-21-15:54:36.231790100/10-00-5a-a8-c7-55
Login_MaxLogin = 5
Login_CurrentLogin = 0
Login_AccessTime = none
Login_DataChain = none
Login_global = yes
Login_invalid_Logins

n
o

4.5.6.6 Release Compatibility

If the Single Login/6000 compiled for AIX DCE 1.2 is used with AIX DCE V.1.3, we
encountered the problem that on the Single Login/6000 server machine users
could not login, because the Single Login/6000 client could not deal with the
local socket.

This might not be a problem anymore by now, but we want to mention it just in
case. We were using Single Login V.1.05.

This is an example of what happens:

Chapter 4. Administering DCE Cells 187

188

su - dce

Login:

Cellname [without /.../]:
Department:dep99
Username:jim

Password:

Sorry
Sorry

The error reported for this problem shows the cause of the problem:

errpt -a | pg

ERROR LABEL: SI_LOGIN_CLIENT

ERROR ID: 244E48C4

Date/Time: Mon Jun 6 21:42:02
Sequence Number: 18050

Machine Id: 000005081800

Node Id: ev8

Error Class: S

Error Type: TEMP

Resource Name: Single Login

Error Description
SOFTWARE PROGRAM ERROR

Probable Causes
SOFTWARE PROGRAM

Failure Causes
SOFTWARE PROGRAM

Recommended Actions
REVIEW DETAILED DATA
CORRECT CONFIGURATION

Detail Data
Additional information:
Single Login 01.0x Communication error with si_Togin start() - comm_st = 16c9a02c

This error appears because the Single Login/6000 code we ran was not compiled
for AIX DCE Version 1.3. So the usage of stream socket binding information was
not available. The way around this is to remove the third binding in the endpoint
mapper associated with Single Login/6000. It shows:

rpccp show mapping | tail -5
<object> nil
<interface id> 00693246-d4b0-1a98-8579-10005a4fde08,1.0
<string binding> ncacn_unix_stream: [/var/dce/rpc/socket/000da232
-d8ec-1df3-987d-10005aa8c755]
<annotation> SI_SERVER

The removal can be done manually as shown here or automatically by running
the complementory script rmsi_stream mapping delivered with the diskette in this
publication.

Using and Administering DCE

rpccp remove mapping -i 00693246-d4b0-1a98-8579-10005a4fde08,1.0 -b \
ncacn_unix_stream: [/var/dce/rpc/socket/000da232-d8ec-1df3-987d-\
10005aa8c755]

>>> 311 matching mappings removed

4.5.6.7 Using Single Login/6000 as a User
This section summarizes the Single Login/6000 procedure as perceived by the
user.

Let us assume that the global AIX user ID is dce without a password:

AIX Version 3
(C) Copyrights by IBM and by others 1982, 1993.
login: dce

This AIX global user account is permanent in the /etc/password file of all
systems where Single Login/6000 users are authorized to login from.

cat /etc/passwd | grep dce
dce:!:203:200:SingleLogin/6000 global userid:/home/dce:/opt/si_Togin/single login

The associated initial program is the Single Login/6000 client program. The
client part communicates directly with the DCE security server to obtain network
credentials and then communicates with the Single Login/6000 server to update
the CDS attributes. This program runs with root permissions. If interrupted, the
user gets back to the AlIX login prompt. They cannot obtain root authority in a
shell.

/opt/si_login/single_login prompts the user for the cellname (for the local cell
just press enter) the department name (if the user has no department, just press
enter) and the username, as illustrated here:

Login:
Cellname [without /.../]:
Department: dep99
Username: jim

The DCE account for this user had been defined by the administrator as follows :

$ rgy edit -v cl
dep99/jim [none none] :*:2006:12:This is jim of
dep99:/:/dfs_home/dep99/jim:/bin/ksh:

Single Login/6000 automatically brings the user into the DCE defined home
directory and gives the user in AlIX the same UID as defined in DCE:

$ pwd

/:/dfs_home/dep99/jim

$ id

uid=2006(jim) gid=12

$ klist | grep P
Global Principal: /.../itsc.austin.ibm.com/dep99/jim
Principal: 000007d6-b58f-2df3-b100-10005aa8c755 dep99/jim

Passwd Expires: never

The coincidence of the UIDs achieved by automatically creating the equivalent
entry in the /etc/passwd file as shown here:

$ cat /etc/passwd | grep cl
c1:*:2006:12:SinglelLogin/6000 defined user::

Chapter 4. Administering DCE Cells 189

Thus the user becomes logged in with AIX and with DCE as shown by the
session attributes:

$ who am i;id
cl pts/3 Jun 06 22:11 (ev8)
uid=2006(cl) gid=12

This is important for accounting and auditing on each local AIX system. See
also 5.4.3, “AlX and Single Login/6000” on page 238 for more information about
these topics.

When the users login for the first time in a certain system, the DCE account
information is stored in the local registry. Should the security server not be
available, such users can login to the local system via the local registry.
However, they do not have network credentials and their home directory is not
accessible if defined in DFS.

4.5.6.8 DFS Home Directory

When working with Single Login/6000 definition of user home directories in DFS
is possible, because at the point when the login procedure makes the home
directory the current directory, it is accessible by the user. They have already
obtained their network credentials.

On the other hand a DFS home directory is also needed to present the same
environment to a user no matter from which system he actually logs in.

It is no problem to define a DFS directory for a Single Login/6000 user. The
directory has to be specified in the DCE account and it has to be created by the
DFS administrator before the user first logs in.

4.5.6.9 Password Rules Customization
The Single Login package provides a set of password rules whose restrictions
are set up by the administrator via the next SMIT panel:

smit
-> Communications Applications and Services
-> IBM Single Login / 6000
-> Configure Single Login / 6000
-> Change password restrictions
(fast path = si_chpwcfg)

Change password restrictions

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

* minimum length of password? [o]
* minimum number of different characters? [0]
* minimum number of alpha characters? [0]
* minimum number of numeric characters? [0]
* maximum number of repetitions? [9]

To list the current password restrictions use SMIT (fastpath =Ispwconf) or
simply run the command lspwconf as shown here:

190 Using and Administering DCE

1spwconf

o

Login_Passwd mindiff =
Login_Passwd minalpha
Login_Passwd_minnumber
Login_Passwd minlen
Login_Passwd_maxrepeats

n
O O O o

The parameters of the rules are kept in the CDS object named
/.:/subsys/SI_LOGIN/configuration/password.

cdscp show object /.:/subsys/SI_LOGIN/configuration/password

SHOW
OBJECT /.../itsc.austin.ibm.com/subsys/SI_LOGIN/config
uration/password
AT 1994-06-22-14:29:53

CDS_CTS = 1994-06-21-15:51:43.883875100/10-00-5a-a8-c7-55
CDS_UTS = 1994-06-21-15:51:44.362058100/10-00-5a-a8-c7-55

Login_Passwd_mindiff = 0
Login_Passwd_minalpha =
Login_Passwd_minnumber =
Login_Passwd_minlen =
Login_Passwd_maxrepeats =

O O O o

The password rules are global within a cell, they apply to all users. Before
Single Login/6000 grants access, it checks the expiration date of the password
as defined in the DCE account. If it is expired, the user is prompted to change
the password by Single Login/6000. The standard dce_login displays a message
but does not force any change. Before the new password is set, Single
Login/6000 checks all the above password rules and continues to request a new
password until the rules are met.

4.5.6.10 User Password

The user password in the Single Login/6000 environment is kept in the DCE
Security registry and not in local AIX user files. When a user or the
administrator has to change a user password, the SMIT DCE change password
panel has to be used, which is accessible from two paths:

smit
-> IBM Single Login / 6000
-> Single Login / 6000 user administration
-> DCE Passwords
(fastpath = chpass)

smit
-> DCE (Distributed Computing Environment)
-> DCE Security & Users Administration
-> Passwords
(fastpath = chpass)

The local AIX password does not exist and does not have to be taken into

account. If the user tries to set or change a local AIX password he will not be
authorized to do so, because there is no valid old password for the change.

Chapter 4. Administering DCE Cells 191

$ id

uid=2007(c2) gid=12

$ passwd

Changing password for "c2"

c2's 01d password:

3004-604 Your entry does not match the old password.
3004-664 You are not authorized to change "c2' s" password.

If the administrator has to provide the user with a command line level operation
for changing the password, the smit.script file illustrates the script commands to
be executed. Basically a read of the current and new password, a check of the
DCE identity and a rgy_edit command similar to the next line can be required:

cat << EOF | rgy_edit

domain account

change -p $principal_name -g $grp name -o $org name -pw "$PASSWD" -mp " $MYPASSWD"
quit

EOF

There is usually no need for a user to explicitly request a change for their
password, unless they feel the password is not safe enough. Single Login/6000
checks the expiration date as defined in the DCE account and requests a new
password from the user if necessary. The password rules as configured in
4.5.6.9, “Password Rules Customization” on page 190 are enforced through
Single Login/6000. The traditional dce_login never enforces a change.

4.5.6.11 Failed Login and Current Sessions Control

For the administrator, the Single Login/6000 package provides information about
the number of cell wide failed logins for each user and the current number and
location of sessions used by a user. This information is stored as attributes to
each user's CDS object as shown by the following output:

$ cdscp show object /.:/subsys/SI LOGIN/user/cl

SHOW
OBJECT /.../aix.itsc.austin.ibm.com/subsys/SI_LOGIN/user/cl
AT 1994-06-23-10:16:07
CDS_CTS = 1994-06-22-22:57:13.809865100/02-60-8c-2e-c8-23
CDS_UTS2 = 1994-06-23-15:15:19.546378100/02-60-8c-2e-c8-23
Login_MaxLogin = 15
Login_CurrentlLogin = 3
Login_AccessTime = Thu Jun 23 10:15:19 1994
Login_DataChain = ev7.itsc.austin.ibm.com since Wed Jun 22 18:00:08 1994
on pts/7 (tx9);ev7.itsc.austin.ibm.com since Wed Jun 22 18:06:30 1994 on pts/
9 (tx9);ev7.itsc.austin.ibm.com since Thu Jun 23 10:15:19 1994 on pts/10 (tx9);
Login_global = yes
Login_invalid_Logins = 0

Login_CurrentLogin
This attribute shows that user cl1 has 3 current sessions in the cell.
Login_AccessTime

This attribute shows the access time of the last login session the user had.
If the user cancels the last session, the value of the attribute is not changed
as it keeps showing the last time the user logged in even if he logged out
from the session.

Login_DataChain

192 Using and Administering DCE

This attribute shows information about the currently running sessions of the
user. This useful information presents where the user is working from. It
displays cellname, client hostname, and terminal information as seen on the
client host (for instance pts/10 (tx9)). The starting time of each session is
also given. Thanks to this cell wide location information, the administrator
can track down all user activities in the cell.

Login_invalid_Logins

This attribute shows the administrator, if the user failed to login due to
specifying a wrong password and how often he unsuccessfully tried. As soon
as the user presents the correct password and gets a login session, the
Login_invalid_Logins is reset.

The user may have unsuccessful logins for configuration reasons not related
to the password. Those non-password related unsuccessful trials are not
counted in the invalid login counter. See the checklist that follows in the
next section for hints on managing potential configuration problems.

4.5.6.12 Checklist for Solving Access Denied Situations

Login can fail for a variety of reasons, but Single Login/6000 does not display
any reason, it just says sorry. From a security point of view, this is correct. So
a hacker who tries to break into a system does not get any hints as to whether
they have found an existing account name or whether they just missed giving a
correct password.

However, from a debugging point of view, it would be desirable to get a reason
for the failure. Once Single Login/6000 is configured and working correctly, no
other errors than typing errors by users should occur. If other errors such as
communication errors occur, Single Login/6000 creates an entry to the AIX error
log. Check this log by typing:

errpt -a

For your convenience we provide a checklist you can follow to find problems
associated with failed user logins that are not just typing errors or an incorrect
password.

1. Is the DCE account still valid?
dce_login cl dce
2. Is the user entry defined in CDS?
cdsli -o /.:/subsys/SI LOGIN/user/cl
3. Are the attributes of the object OK?
cdscp show object /.:/subsys/SI_LOGIN/user/cl
4. Are the ACLs set to the object OK?
acl_edit -e /.:/subsys/SI_LOGIN/user/cl -1
5. Is the user home directory defined with their DCE account?
rgy_edit -v cl
6. Is the user home directory created?
1s -d /:/si_users/global/cl

7. Is the user home directory owned by the user or UID of the DCE user
account?

1s -1d /:/si_users/global/cl ; rgy edit -v cl

Chapter 4. Administering DCE Cells 193

8. Is the user initial program (for example /bin/ksh) defined with their DCE
account?

rgy edit -v cl
9. Is the Single Login server registered in the Namespace?
cdsli -Ro | grep single login srv
10. Is the Single Login server process running on the server machine?
ps -ef | grep single login_ server
11. Has the Single Login client been configured?
echo kt1 | rgy edit
12. Is the password key of the Single Login client valid?
dce_login /.../itsc.austin.ibm.com/single/si_client
13. Is the local department definition correct?
cat /opt/si_login/department

14. |Is your Single Login/6000 version compiled for AIX DCE 1.3 and if no, is the
local stream socket removed?

rpccp show mapping | pg

4.6 Managing the cell_admin Account

cell_admin is per default the omnipotent DCE account, that has the necessary
rights to configure all aspects of DCE. If the cell_admin password or the entire
cell_admin account gets lost, specific steps have to be followed to restore the
lost information.
This section focuses on the following tasks:

1. What to do, if the cell_admin password is lost

2. What to do, if the cell_admin has accidentally been removed

3. Adding new cell_admin accounts
This last procedure also shows you where cell_admin needs to be defined to

have all its rights. If you do not like the fact that one single account is
omnipotent, you can assign the rights to several other special accounts.

4.6.1 Restoring the Password for the Cell Administrator

194

This is the procedure to follow when the cell_admin password is lost or forgotten
for any reason:

1. Kill the security daemon secd:
ki1l -9 “ps xv | grep secd | grep -v grep | awk '{print $1}' °
2. Call secd command in maintenance mode as follows:

secd -locksmith cell_admin -lockpw
Enter password for Tocksmith account: <NEW PASSWORD: not-echoed password>
Reenter password to verify: <NEW PASSWORD: not-echoed password>

3. After this step the command hangs, so either press Ctrl-Z followed by the bg
command to put it in the background or open another window to start the
dce_login session.

Using and Administering DCE

4. Login to DCE with the new password:

dce_login cell_admin
Enter Password: <NEW PASSWORD: not-echoed password>

5. You must stop secd, which is still running in the background:

sec_admin
Default replica: /.../itsc/subsys/dce/sec/master
Default cell: /.../itsc

sec_admin> stop
sec_admin> quit
bye.
#
6. Restart secd from SMIT, with rc.dce secd or simply calling secd from the
command line.

7. Login again with cell_admin using the new password.

first window

=] ER=]

secd —locksmith cell_admin —lockpw
Enter password for locksmith account:
Reenter password to verity:

< hangs for the time in the Second window is
performed the sec_admin—stop subcommand>

#

second window

=] [[O
dee_login cell_admin
Password:
#sec_admin
Detanlt replica: /../fitsc/subsys/dee/sec/master
Default cell: /...fitsc
sec_admin> stop
sec_admin> quit
bye.
#
rc.dee secd
Starting DCE daemons:
starting secd

H #

Figure 30. How to Restore a Lost cell_admin Password

4.6.2 Cell Administrator Accidentally Removed
Accidentally a cell administrator might remove their own user ID:

dce_login cell_admin

Password:

rgy edit

Current site is: registry server at /.../itsc/subsys/dce/sec/master
rgy_edit=> do principal

Domain changed to: principal

Chapter 4. Administering DCE Cells 195

196

rgy edit=> del cell_admin

Please confirm delete of name "cell admin” [y/n]? (n) y
rgy_edit=>

exit

#

From now on, every time the cell administrator tries to log in, the following
message is displayed:

dce_login cell_admin

Sorry.

User Identification Failure. - Registry object not found (dce / sec)
#

Suppose that you as cell administrator delete yourself and go home:

4=l [= [a

dee_login cell_admin :
Password: -

rgy_edit .

Caurrent site is: registry server at -

/... Atsc/subsys/dee/sec/master .

rgy_edit=> do principal L

Domain changed to: principat

rgy_edit=> del cell_admin”

Please confirm delete of name “cell_admin” [y/n]? (n) y

P

rgy_edit=> .
exit -
H #logout

Figure 31. What to Do When cell_admin is Deleted?
The day after, you realize what happened and find yourself in a bad situation

Let us first remember how the cell_admin principal and account was set up.
Each cell administrator is created initially with the following principal, account,
group and ACL information, that must be recreated now:

rgy edit

rgy_edit=> do p

Domain changed to: principal
rgy_edit=> view -members

nobody -2
Member of 1 groups:
nogroup
cell_admin 100

Member of 7 groups:
none, acct-admin, subsys/dce/sec-admin, subsys/dce/cds-admin

Using and Administering DCE

subsys/dce/dts-admin, subsys/dce/dfs-admin, subsys/dce/dskl-admin
rgy edit=> do a
Domain changed to: account
rgy edit=> view -f cell_admin
cell_admin [none none] :*:100:12::/::
created by: /.../itsc/cell_admin 1994/06/03.13:38
changed by: /.../itsc/cell_admin 1994/06/03.13:38
password is: NOT valid, was last changed: 1994/06/03.13:38
Account expiration date: none
Account MAY be a server principal
Account MAY be a client principal
Account is: valid
Account CAN NOT get post-dated certificates
Account CAN get forwardable certificates
Certificates to this service account MAY be issued via TGT authentication
Account CAN get renewable certificates
Account CAN NOT get proxiable certificates
Account CAN NOT have duplicate session keys
Good since date: 1994/06/03.13:38
Max certificate lifetime: default-policy
Max renewable lifetime: default-policy
rgy_edit=>

User cell_admin has an ACL entry user:cell_admin:rwdtc in the following objects
and directories:

:/cell-profile

:/fs

:/lan-profile

:/sec

:/sec-vl

:/hosts

:/hosts/hostname
:/hosts/hostname/cds-clerk
:/hosts/hostname/cds-server
:/hosts/hostname/profile
:/hosts/hostname/self
:/subsys

:/subsys/dce
:/subsys/dce/dfs
:/subsys/dce/dfs/bak
:/subsys/dce/sec

N
.

There may be more CDS objects on which cell_admin has such an ACL entry,
depending on the exact configuration of the cell. To find out all the current rights
of cell_admin you can run the get info user cell_admin command. See 5.5,
“User (and ACL) Management” on page 242 for more information about the user
management tools. The user definition file (UDF) created by the get info_user
command can be also used to recreate the cell_admin account.

Here are the steps you have to perform in order to recover from this situation:
1. Be sure you are root on the local system.
2. Kill the security daemon on the security server
ki1l -9 “ps xv | grep secd | grep -v grep | awk '{print $1}' °

3. Start the security daemon secd in maintenance mode with the locksmith
option:

Chapter 4. Administering DCE Cells 197

198

secd -locksmith cell_admin

Account for cell _admin doesn't exist. Create it [y/n]? (y) y

Enter password for Tocksmith account: <NEW PASSWORD: not-echoed password>
Reenter password to verify: <NEW PASSWORD: not-echoed password>

. At this point the command hangs, so either type in Ctrl-Z followed by the bg

command to put it in the background or open another window to start the
dce_login session.

. Run dce_login command for the cell_admin user

dce_login cell_admin
Enter Password: <NEW PASSWORD: not-echoed password>
#

. Run the rgy_edit command and start to update the user cell_admin. A cell

administrator has been created from the maintenance option locksmith as
follows:

rgy_edit=> view cell_admin -f
cell_admin [none none] :*:104:12::/::
created by: /.../itsc/dce-rgy 1994/06/03.12:02
changed by: /.../itsc/dce-rgy 1994/06/03.12:02
password is: valid, was last changed: 1994/06/03.12:02
Account expiration date: none
Account MAY be a server principal
Account MAY be a client principal
Account is: valid
Account CAN NOT get post-dated certificates
Account CAN get forwardable certificates
Certificates to this service account MAY be issued via TGT authentication
Account CAN get renewable certificates
Account CAN NOT get proxiable certificates
Account CAN NOT have duplicate session keys
Good since date: 1994/06/03.12:02
Max certificate lifetime: default-policy
Max renewable 1ifetime: default-policy
rgy_edit=>

You might notice that the user has been created by the dce-rgy principal and
not by cell_admin.

. Make cell_admin a member of the groups listed below:

acct-admin
subsys/dce/sec-admin
subsys/dce/cds-admin
subsys/dce/dts-admin
subsys/dce/dfs-admin
subsys/dce/dskl-admin

rgy _edit=> do group

Domain changed to: group
rgy_edit=>m acct-admin

Enter name to add: cell_admin
Enter name to add:

Enter name to remove:

rgy_edit=>

rgy_edit=> m subsys/dce/sec-admin
Enter name to add: cell_admin
Enter name to add:

Enter name to remove:

rgy_edit=> m subsys/dce/cds-admin

Using and Administering DCE

Enter name to add: cell_admin
Enter name to add:

Enter name to remove:

rgy_edit=> m subsys/dce/dts-admin
Enter name to add: cell_admin
Enter name to add:

Enter name to remove:

rgy_edit=> m subsys/dce/dfs-admin
Enter name to add: cell_admin
Enter name to add:

Enter name to remove:

rgy_edit=> m subsys/dce/dsk1-admin
Enter name to add: cell_admin
Enter name to add:

Enter name to remove:

rgy_edit=>
rgy edit=> quit
#
8. Exit from your current session and login again as cell_admin:
exit
dce_login cell_admin
Password:
#
9. Update the ACL entries for all the directories and objects with the following
commands:
acl_edit -e /.:/cell-profile -m user:cell_admin:rwdtc
acl_edit -e /.:/fs -m user:cell_admin:rwdtc
acl_edit -e /.:/lan-profile -m user:cell_admin:rwdtc
acl_edit -e /.:/sec -m user:cell_admin:rwdtc
acl_edit -e /.:/sec-vl -m user:cell_admin:rwdtc
acl_edit -e /.:/hosts -m user:cell_admin:rwdtc
acl_edit -e /.:/hosts/hostname -m user:cell _admin:rwdtc
acl_edit -e /.:/hosts/hostname/cds-clerk -m user:cell_admin:rwdtc
acl_edit -e /.:/hosts/hostname/cds-server -m user:cell_admin:rwdtc
acl_edit -e /.:/hosts/hostname/profile -m user:cell_admin:rwdtc
acl_edit -e /.:/hosts/hostname/self -m user:cell_admin:rwdtc
acl_edit -e /.:/subsys -m user:cell_admin:rwdtc
acl_edit -e /.:/subsys/dce -m user:cell_admin:rwdtc
acl_edit -e /.:/subsys/dce/dfs -m user:cell_admin:rwdtc
acl_edit -e /.:/subsys/dce/dfs/bak -m user:cell_admin:rwdtc
acl_edit -e /.:/subsys/dce/sec -m user:cell_admin:rwdtc

10. Run sec_admin command with the stop subcommand to stop the security
daemon which is still running in maintenance mode in the other window or in
the background:

sec_admin
Default replica: /.../itsc/subsys/dce/sec/master
Default cell: /.../litsc

sec_admin> stop
sec_admin> quit
bye.

#

11. Start up the security daemon again and start working in normal mode:

Chapter 4. Administering DCE Cells 199

rc.dce secd
Starting DCE daemons:

starting secd
#

=] 1= 10

secd —locksmith cell admin

Account for cell_admin doesn’t exist. Create it [y/n]? (y) ¥
Enter password for locksmith account: .
Reenter password to verify: first window

< hangs for the time in the second window all the recovery
operations are performed and the sec_admin—stop subcom-
mand is called>

| #

1 1
= [o 10
dece_login cell_admin
Password:
rgy_edit
rgy_edit=> do group
Domain changed to: group
rgy_edit=>m acct—admin
Enter name to add: cell_admin
_edit=> LA all the others ..>
dee_login cell_admin
Password:
second window # acl_edit—e /.:/cell-profile —m user:cell_admin:rwdt
<.... all the others>
sec_admin
Default replica: /...Atsc/subsys/dee/sec/master
Default cell: /L..fitsc
sec_admin> stop
sec_admin> quit
bye.
re.dee secd
Starting DCE daemons: H
starting secd

Figure 32. Recreating the cell_admin Account

4.6.3 Adding a New Cell Administrator

A new cell administrator can be added to the system with the same rights as the
original one. You may want to have two administrators or delete the old one
afterwards.

4.6.2, “Cell Administrator Accidentally Removed” on page 195 shows how
cell_admin is defined when it is first created.

More definitions or permissions might be there depending on the complexity of
the distributed environment.

To find out all the current rights of cell_admin you can run the get_info_user
cell_admin command. See 5.5, “User (and ACL) Management” on page 242 for
more information about the user management tools. The user definition file
(UDF) created by the get info_user command can be also used to create the
new_admin account.
To add a new cell_administrator do the following:

1. Login as cell_admin:

2. Add a new principal:

200 Using and Administering DCE

rgy edit

rgy edit=> do p

Domain changed to: principal
rgy_edit=> add new_admin

. Add a new account:

rgy edit=> do a

Domain changed to: account

rgy_edit=> add

Add Account=> Enter account id [pname]: new admin

Enter account group [gname]: none

Enter account organization [oname]: none

Enter password:

Retype password:

Enter your password:

Enter misc info: () New Administrator

Enter home directory: (/) /home/new_admin

Enter shell: () /bin/ksh

Password valid [y/n]? (y)

Enter expiration date [yy/mm/dd or 'none']: (none)

Allow account to be server principal [y/n]? (y)

Allow account to be client principal [y/n]? (y)

Account valid for login [y/n]? (y)

Allow account to obtain post-dated certificates [y/n]? (n)
Allow account to obtain forwardable certificates [y/n]? (y)
Allow certificates to this account to be issued via TGT authentication [y/n]? (y
)

Allow account to obtain renewable certificates [y/n]? (y)
Allow account to obtain proxiable certificates [y/n]? (n)
Allow account to obtain duplicate session keys [y/n]? (n)
Good since date [yy/mm/dd]: (1994/06/03.16:28)
Create/Change auth policy for this acct [y/n]? (n)

Add Account=> Enter account id [pname]:

. Add new_admin to the necessary groups:

rgy _edit=> do group

Domain changed to: group

rgy edit=>m acct-admin

Enter name to add: new_admin
Enter name to add:

Enter name to remove:

rgy_edit=>

rgy_edit=> m subsys/dce/sec-admin
Enter name to add: new_admin
Enter name to add:

Enter name to remove:

rgy_edit=> m subsys/dce/cds-admin
Enter name to add: new_admin
Enter name to add:

Enter name to remove:

rgy_edit=> m subsys/dce/dts-admin
Enter name to add: new_admin
Enter name to add:

Enter name to remove:

rgy_edit=> m subsys/dce/dfs-admin
Enter name to add: new_admin
Enter name to add:

Enter name to remove:

rgy_edit=> m subsys/dce/dsk1-admin

Chapter 4. Administering DCE Cells 201

Enter name to add: new_admin
Enter name to add:

Enter name to remove:
rgy_edit=>

rgy edit=> quit

5. Create ACL entries for the following CDS objects:

acl_edit -e /.:/cell-profile -m user:new_admin:rwdtc

acl_edit -e /.:/fs -m user:new_admin:rwdtc

acl_edit -e /.:/1an-profile -m user:new_admin:rwdtc

acl_edit -e /.:/sec -m user:new_admin:rwdtc

acl_edit -e /.:/sec-vl -m user:new_admin:rwdtc

acl_edit -e /.:/hosts -m user:new_admin:rwdtc

acl_edit -e /.:/hosts/hostname -m user:new_admin:rwdtc

acl_edit -e /.:/hosts/hostname/cds-clerk -m user:new_admin:rwdtc
acl_edit -e /.:/hosts/hostname/cds-server -m user:new_admin:rwdtc
acl_edit -e /.:/hosts/hostname/profile -m user:new_admin:rwdtc
acl_edit -e /.:/hosts/hostname/self -m user:new_admin:rwdtc
acl_edit -e /.:/subsys -m user:new_admin:rwdtc

acl_edit -e /.:/subsys/dce -m user:new_admin:rwdtc

acl_edit -e /.:/subsys/dce/dfs -m user:new_admin:rwdtc

acl edit -e /.:/subsys/dce/dfs/bak -m user:new admin:rwdtc
acl_edit -e /.:/subsys/dce/sec -m user:new_admin:rwdtc

SHs e e e e e e e e e e e e e e e

6. Now you could delete the old cell_admin:

dce_Togin new_admin

Enter Password:

rgy edit

Current site is: registry server at /.../itsc/subsys/dce/sec/master
rgy_edit=> Domain changed to: principal

rgy edit=> do p

rgy edit=> del cell_admin

Please confirm delete of name "cell_admin” [y/n]? (n) y

rgy edit=> quit

bye.

From now on the cell_admin is not part of your DCE environment:

dce_login cell_admin

Sorry.

User Identification Failure. - Registry object not found (dce / sec)
#

4.7

202

Integrating an NFS/NIS Environment

The Network Information System (NIS) and Network File System (NFS) are
network services which were developed and introduced in 1985 by Sun
Microsystems. NIS provides a distributed database system for common
configuration files. NIS servers manage copies of the database files and NIS
clients request information from the server instead of looking them up in their
local copies of the files. For example /etc/hosts is managed by NIS. NIS servers
manage copies of the information contained in the /etc/hosts file. All NIS clients
ask these servers for TCP/IP address information instead of consulting there
local /etc/hosts file.

NFS is a distributed file system. An NFS server has one or more file systems

exported, which may be mounted by clients. To the NFS client, these file
systems look like local file systems. Although NFS works with NIS, it can also be

Using and Administering DCE

used separately. See 1.3.4, “NIS/NFS” on page 23 for a description of NFS/NIS
and how it compares to DCE/DFS.

As outlined in the above referenced section of chapter 1, DCE/DFS serves the
same purpose as NFS/NIS but has many advantages. However, it is relatively
new and is just about to establish itself as a standard platform for C/S
environments. Many customer installations today use NFS/NIS to store common
configuration files or to build RPC based client/server applications or a
distributed file system.

In order to convince customers to purchase DCE we must show them one or
both of the following ways to deal with the established NFS/NIS environment:

How to integrate NFS/NIS into DCE/DFS
How to migrate from NFS/NIS to DCE/DFS

The purpose of this section is to discuss these two issues. In most of the cases
where DCE/DFS is introduced we will see both steps. DCE/DFS capable
platforms could be migrated, whereas other platforms would continue to use NFS
but with transparent access to DFS. This scenario determines the logical
sequence of our subsections:

1. Migrating from NIS Domains to DCE cells
2. Migrating users from NIS to DCE

3. Migrating NFS file systems to DFS

4. Configuring NFS to DFS access

4.7.1 Migrating from NIS Domains to DCE cells

NIS can centrally manage configuration files usually needed on each single
system. The files like for instance an /etc/passwd file is present on each
system, but it contains an escape sequence that directs the lookup call to a
central file. These configuration files managed by NIS are converted into
keyword and value pair tables called maps. You can lookup these maps with the
command ypcat. If you enter for example ypcat hosts you concatenate your
local /etc/hosts file with the database information about hosts and display them
as if you were displaying a regular /etc/hosts file.

If you are using NIS within your environment, you may want to migrate NIS
information over to DCE. Considerations for this migration are discussed in this
chapter.

First you must evaluate the maps administrated by NIS. Following is a list of
possible maps:

/etc/groups

/etc/passwd

/etc/aliases

/etc/hosts

/etc/protocols

/etc/services

letc/rpc

and possibly more, specific to each customer

Once you have this list, decide which network information is important to have
commonly available within your cell. There are maps which have to be treated
differently. The following list gives you some ideas how to manage them:

Chapter 4. Administering DCE Cells 203

204

/etc/hosts

The map of /etc/hosts should be migrated to the Domain Name Service
(DNS) standard of internet. This allows you also to go for intercell
communication later on.

/etc/passwd and /etc/group

The password and the group file information is managed in the DCE security
registry, one of the core pieces of DCE. Unfortunately DCE is not well
enough integrated into AIX yet so that two logins are required, whereas
NFS/NFS is fully integrated. There is an optional program offering, Single
Login/6000, which uses the DCE registry as a central user repository and
offers additional functions for login integration of AIX and DCE. Single
Login/6000 is being discussed in more detail in 5.4, “Single Login/6000” on
page 235. In 4.7.2, “Migrating Users from NIS to DCE” on page 205 we
describe how to populate the DCE user registry database from NIS maps.

Other configuration files such as /etc/services, /etc/rpc and others

All the other configuration files listed above can be managed either with
DCE/DFS or with objects in the namespace. This is described in the rest of
this section.

In a network there is always data which must be consistent and well known
among all the connected systems. /etc/services or /etc/protocols are two
examples of such files. Within DCE there are several ways to provide the
network consistency of such files.

Since these files build part of the TCP/IP definitions which itself is an enabling
layer for DCE the files cannot simply be in DFS. They would not be available
when TCP/IP needs them. What this means is they need to be local. Our
approach is to find a way with DCE to keep them synchronized on all the
systems.

4.7.1.1 Distribution via Binary Distribution Machine (BDM)

BDM is a feature provided by DFS to update common files within the network. A
BDM server machine running an upserver process is listening for client
machines running an upclient process. The upclients pull files from the BDM.
The files need to have the exact same full path name on all systems. If this is
not the case for certain files, another family of upserver/upclients can be
defined.

Files like /etc/services or /etc/protocols could be maintained on a central system
running a BDM. By default, the upclient process on each involved machine
checks its BDM for new (or different) versions of certain predefined files every
five minutes; if it finds new versions, it automatically copies the files to its local
machine.

For more detailed information consult the ITSO publication The Distributed File
System (DFS) for AIX/6000 or InfoExplorer.

4.7.1.2 Distribution via DFS Namespace

You can maintain the files on one machine and copy them to the DFS
namespace. All other systems use the same mechanism to copy the files from
DFS to their local file system.

Using and Administering DCE

The copy procedure can compare the versions by checking the modification time
and copy only, if something has changed. This procedure would have to be
executed in regular intervals controlled by cron.

This is a very simple but effective way of being consistent within the network.

4.7.1.3 Distribution via CDS Namespace

Although it is not recommended to store data in the CDS namespace, there is
the possibility of keeping information which has to be consistent throughout the
cell in a CDS object. Following is an example for the file /etc/services:

1. Create an object in the namespace:
cdscp create object /.:/services
2. Add a new attribute to the file /etc/dce/cds_attribute:
echo "1.3.22.1.3.60 CDS_TCPIP_SERVICES char" >> /etc/dce/cds_attribute

This defines the attribute CDS_TCPIP_SERVICES of type character to be used
within your namespace. /etc/dce/cds_attribute is also a file which needs to
be consistent on all the systems within the cell.

3. Now you are ready to enter the information to be distributed into the object.
For example the following entries of /etc/services:

domain 53/tcp namserver # domain name server
domain 53/udp namserver

would be entered into CDS with

cdscp add object /.:/services CDS_TCPIP_SERVICES=domain:53/tcp:nameserver
cdscp add object /.:/services CDS_TCPIP_SERVICES=domain:53/udp:nameserver

The colons (:) are used as field delimiters. Process each entry of
/etc/services in this way.

4. Once you have filled in all these attribute entries into the object, they are
available for every system in your cell. The systems now need a script
which must frequently check the content of the object for updates and if
necessary update the local /etc/services. Use cron to execute this check at
regular intervals.

We cannot tell you which method is the best for you. Each case needs to be
analyzed separately. However, you must always keep in mind, that you should
not fill up your CDS database with to much non-DCE relevant data.
Clearinghouses are not designed to be used as general purpose databases but
to provide important binding information to your network application.

4.7.2 Migrating Users from NIS to DCE

As explained above NIS users are centrally managed in a passwd map. The
passwd map can be looked up by entering the command:

ypcat passwd

The output of this command has the same format as if you were displaying a
local /etc/passwd file

cat /etc/passwd

To migrate users from NIS to the DCE registry database, we use mainly our user
management tools as described in 5.5, “User (and ACL) Management” on
page 242.

Chapter 4. Administering DCE Cells 205

206

All we must have is a small shell script nis2dce_users that reads the information
from ypcat passwd and transforms the entries into UDF format (user definition file)
for use by our add_users and enable users procedures. For explanations on how
this script works we include a listing in 4.7.2.3, “The nis2dce_users Procedure”
on page 207.

There is one important issue when migrating from any environment to DCE:
unique user IDs and group IDs (UIDs/GIDs). Most likely you will have to unify
UIDs and GIDs when introducing DCE in a previously unorganized environment
of single workstations. Even in an NFS/NIS environment it might be necessary to
unify UIDs/GIDs first, when multiple NIS domains are migrated into one DCE cell
or when NIS and DCE have to be merged because a DCE cell is already there.
So we have to look at two cases:

1. Unifying UIDs/GIDs and adjusting all their properties before the migration

2. Moving user accounts and groups straight into DCE

4.7.2.1 Unifying UIDs/GIDs and Adjusting File Ownerships

As mentioned above it might be necessary to make UIDs unique before they can
be entered into the DCE registry. Before you can reassign UIDs/GIDs to existing
users/groups you must find out what resources they own or have access rights
to. Remember the user and group names are just for the user's or
administrator's convenience for login or to trace activities or access rights.
Internally everything is based only on the UID and GID, simply called ID
hereafter. Candidates to look at are, for example:

Files and directories

Databases

Configuration files that define access rights, such as:
- .rhosts

- letc/exports

These particular examples of configuration files use user or group names.
As long as the IDs are consistently changed on all systems, these files need
not be changed because the user names still have the desired effect.

There might be more subsystems in your environment that will be affected by a
global ID change. We pick the most common case and show how ownership of
files and directories need to be changed. It is a pretty tedious task, but it has to
be done sooner or later. Otherwise you will become very confused when you

start to deal with DFS Access Control Lists while DCE IDs do not match AIX IDs.

The following is generalized procedure to perform global ID changes on files and
directories:

1. Find out which subsystems will be affected as outlined above

2. Create a list of existing UIDs/GIDs in DCE and all other repositories

3. Create a cross reference list that shows which existing IDs need to be
changed into what target DCE ID.

4. Check whether on each individual system one of the target IDs is already in
use by another user. If this is the case, the other user needs to be moved
away from that target ID first.

Using and Administering DCE

This means: Sort the cross reference list so that you do not inadvertently
lump together files of different owners to one UID. You might have to create
intermediate UIDs, if there are too many mutual dependencies.

5. Start global changes from the top of your sorted cross reference list, one at
a time on each involved system:

find / -user <old_UID> -print | xargs chown <new UID>
Caution: be sure that <new_UID> is not in use (anymore)!

The same steps need to be followed for the group IDs (GIDs). Then create the
DCE user accounts as outlined below.

4.7.2.2 Moving User Accounts and Groups into DCE

Moving users and groups from an existing environment means extracting their
existing user account and group information and put them into UDF and GDF
format files so they can be treated with our DCE user management tools. See
5.5, “User (and ACL) Management” on page 242 for explanations on UDF/GDF
and the tools.

Assuming you installed the user management scripts in directory /umgt and
directory temp_users does not exist yet, you perform the following steps:

cd /umgt

mkdir dce_users

nis2dce_users temp_users

nis2dce_groups temp_groups

Since you have checked all UIDs/GIDs for duplications and fixed possible
problems above, you can now copy all the files from the temporary repository to
the DCE repositories dce_users and dce_groups and add the users and groups:

dce_login cell_admin <passwd>
add_groups all

add_users all

rgy_enable_users all

The nis2dce_users script is shown below. It could easily be modified for use
with other environments. A procedure pwd2dce is also provided with this
publication.

4.7.2.3 The nis2dce _users Procedure

This procedure reads the passwd NIS map and writes a user definition file (UDF)
for each user. It uses the READ_UDF and WRITE_UDF scripts. See 5.5, “User
(and ACL) Management” on page 242 for information about the user
management tools.

In READ_UDF you will see what variables can be set. READ_UDF assigns the
default values to the new user file. Then use WRITE_UDF to write the upper part
of the file and eventually write the extracted values to the end of the file as ADD
instructions.

You might want to change the script before you run it, for instance to exclude old
home directory information. You should inspect all UDFs before you move them
to the repository dce_users. They might contain information that you want to
change, add, or remove.

Chapter 4. Administering DCE Cells 207

#1/bin/ksh

This script extracts NIS records and write a UDF file
for each user

$1 must be a new repository

dir=$1

if[$#=0]1]

then
echo "Usage: nis2dce users <new_repository>"
exit

fi

if [-d "$dir"]

then
echo "Directory $dir already exists, specify a new directory”
exit

fi

mkdir $dir

Read the NIS passwd map
ypcat passwd | {
while read input

do
user="echo $input | cut -fl -d:"
echo "Writing UDF for user $user ...”
. READ_UDF $user $dir
. WRITE_UDF $user $dir NEW define_udf
echo "ADD uid="echo $input | cut -f3 -d: ™" >> $dir/$user
GROUPID="echo $input | cut -f4 -d:"
GROUP="ypcat group | grep :$GROUPID: |cut -fl -d:"
echo "ADD newgrp=$GROUP" >> $dir/$user
echo "ADD_gecos="echo $input | cut -f5 -d: " >> $dir/$user
echo "ADD_homedir="echo $input | cut -f6 -d: " >> $dir/$user
echo "ADD _initprog="echo $input | cut -f7 -d:>" >> $dir/$user
for p in “ypcat group | grep $user |grep -v :$GROUPID:™ ; do
MEMBER="$MEMBER echo $p | cut -fl -d:~ "
done
if [-n "$MEMBER"]
then
echo "ADD_groups=$MEMBER” >> $dir/$user
fi
MEMBER=""
done

}

echo "Al11 files are created in directory $dir”
echo "Inspect them before you move them into the repository dce users\n”

4.7.3 Migrating NFS Files to DCE/DFS

Before you move any files into DFS make sure you have unique UIDs/GIDs. If
you had to make them unique, be sure to have also changed the ownership of
files and directories to new the UIDs/GIDs as outlined in the previous chapter.

208 Using and Administering DCE

— Note

If you continue with mismatches between AIX/NFS UIDs and DCE UIDs, you
will always become confused about actual file ownerships and access
permissions.

Even though it might be a very tedious job to unify UIDs/GIDs, do it now to
save you a lot of trouble later on.

Before you can move the files to DFS, the framework of directories with mount
points for filesets should be in place. This step actually needs a lot of design
work, because for performance reasons it probably makes sense to create the
filesets in different aggregates and on different file servers. Please refer to
Chapter 3, “Implementing DCE Cells” on page 43 for tips and guidelines on
designing and implementing DFS.

Moving files from AIX or NFS to DCE is a simple task but you have to be aware
of how ACLs are assigned or inherited, when the files are created. We would
like to give a short description on DCE ACL inheritance, before we show how to
copy the files.

4.7.3.1 DFS ACL Inheritance

ACL inheritance is the method by which a file or a directory is given an ACL
when they are created. Certain values, we call them Initial Creation ACLs, are
defined on the parent directory and are passed to new files and directories
within that directory. For files, the values that are passed are the Initial Object
Creation (I0OC) ACL. Directories receive the Initial Container Creation (ICC)
ACLs for themselves plus they store the I0C and ICC to further pass them to
files or directories underneath.

There are three things to consider when the ACL is created for a new object or
directory:

1. AIX mode bits specified with the system call that creates a file or directory.

For example a command such as touch or redirection of output into a file use
the open() system call with permissions rw-rw-rw, if they are creating a new
file. If the file is already there, permissions are not changed. Commands
like cp or tar use the permission of the source file, if they are creating a new
file. If the file is already there, permissions are not changed.

2. Initial Creation ACL set for the parent directory

3. umask attribute of the process creating the file

If Initial Creation ACLs are set, then items 1 and 2 will be used for the new
object. For the corresponding entries user_obj, group_obj, mask_obj, and
other_obj the more restrictive set is applied (AND operation).

If the parent directory does not have Initial Creation ACLs defined, the umask is
used to possibly further restrict the permission bits as explained in item 1. In
this case, an ACL for the newly created file or directory will not be created and
the protection will be only by AIX mode bits.

Note: It may seem that the Initial Creation ACLs are always set when you list
them with the acl_edit command. However, if you have not explicitly set them,
they are not there and what you see is the umask which is interpreted by
acl_edit.

Chapter 4. Administering DCE Cells 209

210

But how do we know whether the Initial Creation ACLs are set or not?

The following procedure shows a way to test whether ACLs are on the directory
/:/testdir:

cd /:
/: #acl_edit testdir -1 -io

Initial SEC_ACL for objects created under: testdir:
Default cell = /.../itsc.austin.ibm.com
user_obj:rwxc--

group_obj:r-x---

other_obj:r-x---

/: #umask

022

The umask 022 means that write permissions for group and others are masked
out. So this ACL corresponds to the umask, which makes it likely that ACLs
have not been set. To check, we need to change the umask with the umask
command and list the ACL again:

/: #umask O

/: #umask

00

/: #touch testdir/t

/: #rm testdir/t

/: #acl_edit testdir -1 -io

Initial SEC_ACL for objects created under: testdir:
Default cell = /.../itsc.austin.ibm.com

user _obj:rwxc--

group_obj:rwx---

other_obj:rwx---

The fact the Initial Object Creation ACL is changing along with the umask
indicates that the ACL has not been set. Touching a file seems to be necessary
for acl_edit to reflect the new umask value.

We recommend setting the Initial Creation ACLs on the top directory which will
receive the new file subtree. Furthermore, you should set ACLs on all
underlying fileset mount points because ACL inheritance does not go across
fileset boundaries. In this way you make sure all new files and directories
created in the future will also receive ACLs.

If you do not want to set the ACL you should check whether ACLs are already
set or whether the umask will be in effect. If the latter is true, no ACLs will be
set and the umask will also in the future be used when new files or directories
are created.

4.7.3.2 Moving the Files

Before you copy the files over to DFS you should have:

Unified UIDs/GIDs

Adjusted file ownerships to the new UIDs/GIDs at the old location
Created the DFS fileset framework

Set Initial Creation ACLs on all filesets

This is just a summary of the steps explained above. Now that you are prepared
you can use any copy method that allows preserving of file ownership and
permissions, for example:

Using and Administering DCE

cp -pr
rcp -pr
tar -xpvf

Assume we want to move the /home file system with all users’' home directories
to /:/dfshome. To be able to better control the users’ resources and quotas we
want to give each user his own fileset. The following generalized example
outlines the necessary steps:

1. Login as root

2. Run nis2dce user and nis2dce_groups and check whether you need to adjust
any IDs

3. Now is the last opportunity to adjust UIDs/GIDs and file ownerships

4. Create the archive:

#cd /home
#tar -cvf/dev/rmt0 .

DCE login as cell_admin
. Add the new groups to DCE with add_groups

. Add the new users to DCE with add_users

© N o O

. Now is the last opportunity to create all the necessary filesets and target
directories which will serve as mount points.

9. Check all DFS filesets for availability

#cd /:/dfshome
#cd /:/dfshome/userl
#cd /:/dfshome/user2

10. Check, or better, actually set the Initial Creation ACLs on all involved filesets

such as /:/dfshome/userl and so on. Remember that ACLs are not passed
across mount points.

11. Restore the files

#cd /:/dfshome
#tar -xpvf/dev/rmt0

It is necessary to be root and cell_admin in order to preserve file ownership
upon creating the new DFS files. The -p flag overrides the umask or Initial
Creation ACLs which might be in use and sets the mode bits as they were
defined on the old files.

Note: It is nevertheless important to set the Initial Creation ACLs, because we
want the IOCs and ICCs to be passed on to subdirectories. They are not
overwritten by the -p flag.

4.7.4 Configuring DFS Access from NFS Clients

Chapter 4. Administering DCE Cells 211

212

evd

DCE Clients NF$S Client
DCE DTS Local
ev4
DCE Security Server
BEE (D:Ef? si‘ierver DCE Clients
erver DCE DTS Local
DCE DTS Local NFS Server =

Figure 33. Scenario with Coexistence of NFS Clients and DCE/DFS

This is the task to configure step by step the NFS/DFS Translator and how to
access the DFS file space remotely from NFS client machines. Before starting to
configure DFS access from NFS clients, we suggest you read 5.3, “NFS to DFS
Authenticating Gateway” on page 227 to understand the basics about the
translator.

According to Figure 33 machine ev4 is a DFS client machine and also houses
the NFS/DFS Translator. The machine ev3is an NFS UNIX machine, ev5 is an
NFS OS/2 machine and ev6 is an NFS DOS/Windows machine. Suppose we want
to export a DFS directory /:/dfshome/brice to the NFS server and that the user
account brice exists on ev4 (in /etc/passwd) and in the DCE registry database.
The directory /:/dfshome/brice is a mount point for fileset hbrice.ft and is the
home directory for user brice.

See 4.2.4, “Defining Home Directories in DFS” on page 115 for tips how to define

a user's home directory in DFS.

Here is an overview over the steps we will perform and describe in this section:
Applying ACLs to a directory before exporting

Configuring and starting the NFS/DFS Translator on a DFS client machine, on
ev4 in our case

Exporting a directory
Registering the authentication mappings

Mounting a DFS remote directory via NFS to a local one

4.7.4.1 Preparation Steps

See 4.1.1, “Preparing for DCE Configuration” on page 84. To install the DCE cell
follow the configuration steps exactly in 3.1.1, “Scenario 1: All Servers on One
Machine without Replicas” on page 45 for machines evl, ev2, ev4.

Install and test TCP/IP and NFS on the OS/2 and the DOS/Windows machines.
Please follow the appropriate system documentation.

Using and Administering DCE

4.7.4.2 NFS/DFS Translator Configuration Steps
Following are all the configuration steps for this scenario.
Creating and mounting the additional filesets on evl
1. Create a logical volume /dev/dfshome with 5 blocks of 4MB:
#mklv -y’ dfshome’ rootvg 5
2. Create an aggregate on the /dev/dfshome:
#newaggr -aggreg /dev/dfshome -b1 8192 -fr 1024
3. Export the aggregate:
#mkdfs1fs -d /dev/dfshome -n dfshome
4. Create the dfshome fileset with mount point:
#mkdfs1fs -f dfshome.ft -m /:/dfshome -n dfshome
5. Create brice's fileset with mount point in the same aggregate:
#mkdfs1fs -f hbrice.ft -m /:/dfshome/brice -n dfshome
6. Try to see if the filesets are correctly exported:
#fts 1sfldb
7. Make brice the owner of the new fileset:

chown brice.staff /:/dfshome/brice
Applying ACLs to a directory:

To make sure that this directory is protected, user brice has to apply ACLs on it,
if it is not yet done. Normally this step is to be done by the owner of the
directory.

1. Login as DCE brice principal on ev4:
$dce login brice brice passwd
2. Apply ACLs on the directory /:/dfshome/brice:
$acl_edit /:/brice
Inherited rights when you create another subdirectory:
$acl_edit /:/brice -ic
Inherited rights when you create files underneath this point in the file tree:
$acl_edit /:/brice -io
The job of user brice stops here for the moment. He has to wait for the
NFS/DFS Translator to be started and for the directory to be exported to NFS.
Configuring and starting the NFS/DFS Translator on ev4:

This step has to be executed by a UNIX system administrator. Be sure that:
DFS client is configured and running on the machine

NFS server is running on the machine

Start the NFS/DFS Authenticating Translator via SMIT:

Chapter 4. Administering DCE Cells 213

#smitty dce
-> Configure DCE/DFS
-> NFS/DFS Authenticating Translator Administration
-> Start NFS/DFS Authenticating Translator
(fastpath = dfsnfs)

Press Enter. Then the following message is shown:

The NFS to DFS Authenticating Translator has been started successfully.

Note

If you do not see this message, the reason might be a bad version of the
nfs.ext file in the /etc/drivers directory. This happened to us, but should not
happen with the release level product.

Instead of using SMIT, you can also simply start the NFS/DFS Authentication
from the command line:

#/etc/rc.dfsnfs

If you want to automatically start the NFS/DFS Authentication Translator, you
have to put this command into the /etc/inittab file.

Exporting the DFS directory to NFS:
This task needs to be done by a UNIX super user.

Call SMIT and follow the indicated path or call SMIT with the fastpath name:

#smit nfs_menus
-> Network File System (NFS)
-> Add a Directory to Exports List
(fastpath = dfsnfs)

Add a Directory to Exports List

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]

* PATHNAME of directory to export [/:/dfshome/brice]
* MODE to export directory read-write +
HOSTNAME Tist. If exported read-mostly [1
Anonymous UID [-2]
HOSTS allowed root access 0
HOSTS & NETGROUPS allowed client access [ev3,ev5,ev6]
Use SECURE option? no +
* EXPORT directory now, system restart or both both +
PATHNAME of Exports file if using HA-NFS [1

Check if the directory is exported correctly by using exportfs command:
#exportfs
At this point the directory is exported to the NFS clients. Nevertheless, NFS

client users cannot yet access this DFS fileset until user brice has registered his
authentication mapping on the NFS/DFS Translator site.

214 Using and Administering DCE

Registering your authentication mappings on ev4:

As we previously explained: before a directory can be mounted by an NFS client,
the owner of the fileset has to register his authentication mapping on the
NFS/DFS Translator site. This task can be done either by user brice who has a
UNIX account and a DCE account or by a UNIX super user who knows brice's
DCE password. We suppose here that user brice is doing that himself. User
brice is still logged into AIX and DCE on ev4.

The command to use on the NFS/DFS Translator site is:

$ dfsiauth -add -r ev3 -i 107 -u brice -p brice passwd
$ dfsiauth -add -r ev5 -i 107 -u brice -p brice passwd
$ dfsiauth -add -r ev6 -i 107 -u brice -p brice passwd

Check if the registering is done correctly:
$ dfsiauth -Tist

Host Uid Principal @sys Ghost Expiration

ev3 107 brice 5/27/94 00:30
evh 107 brice 5/27/94 00:30
evb 107 brice 5/27/94 00:30

Mounting directory:
Before trying to mount the remote directory, make sure that TCP/IP and NFS are
running on all machines.
1. On a UNIX machine (ev3) enter:
#mount -v nfs -n ev4d /:/brice /u/brice
2. On an OS/2 system (ev5):

c>mount E: ev4:/:/brice
UID: 107
GID: 100

3. On a DOS/Windows system (evé6):
c>mount E: ev4:/:/brice

We assume the disk unit E: is defined on the DOS system.

4.8 Configuring DCE on HACMP
The following DCE core services are installed in our test of DCE on HACMP/6000:

cds_cl COMPLETE CDS Clerk

cds_srv COMPLETE Initial CDS Server
dts_Tocal COMPLETE Local DTS Server
rpc COMPLETE ~ RPC Endpoint Mapper
sec_cl COMPLETE Security Client
sec_srv COMPLETE Security Server

According to the DCE memo-to-users that announced IBM AlIX High Availability
Cluster Multi-Processing/6000 support for DCE on the AIX platform, the following
HACMP/6000 Release 2.1 configurations are supported:

One-for-One Standby Configuration with Owned/Takeover Resources

Chapter 4. Administering DCE Cells 215

One-Sided Takeover Using Owned/Takeover Resources
One-for-One Standby Configuration with Rotating Resources
In line with this definition of supported HACMP/6000 configurations, we did not

operate any highly available DCE service on the standby node prior to fallover.

If you decide to run DCE services like a DCE client and/or DCE application server
on the standby node, you must provide a procedure to terminate these prior to
takeover.

Configuration requirements for the minimum impact fallover are:

1. IP addresses for DCE services must be configured as Owned/Takeover or
Rotating resources

2. Assign the hardware address for the adapter to eliminate the need for ARP
cache updates on the DCE client nodes

3. File systems /krb5, /var/dce and /etc/dce must reside on the shared DASD
and are configured as Owned/Takeover or Rotating resources

Primary server Hot standby

RPC_UNSUPPORTED_NETIFS=trl RPC_UNSUPPORTED_NETIFS=tr0)

9.3.1.16 934.16 93.1.17 5.34.17
i . !
srv stby STV stby
tr0 trl Shared Volume group trl 0
hadave 1 HHHH “sharevg” HHHH hadave2

1111111
i ~—— i
=1 =]

= — =]
/krb5
tty0 Jetc/dee tty0
fvarfdee

Figure 34. DCE on HACMP/6000. This cluster configuration was used with nodes evl1,
ev2, ev3, and ev4 (see scenarios in Chapter 3, “Implementing DCE Cells” on page 43),
which were all defined as DCE clients.

The following description shows the steps how to configure and install DCE in an
HACMP/6000 cluster:

1. Prior to installing/configuring DCE, HACMP/6000 has to be installed,
configured, and tested on your cluster.

2. Create separate logical volumes and file systems for /krb5, /var/dce and
/etc/dce on a shared disk.

216 Using and Administering DCE

3. DCE must ignore certain network interfaces used by HACMP/6000 as it
initializes. The network interfaces to ignore are the standby interfaces of the
primary machine and those used strictly for cluster node keep alive
communication. The environment variable RPC_UNSUPPORTED_NETIFS is
used for this purpose. You must add it to the file /etc/environment. To take
effect, it is necessary to reboot the system. For example, if on the primary
node network interfaces trl and enl were used as standby and interface slO
for cluster node keep alive packets, then the environment variable would
have to be set as follows:

RPC_UNSUPPORTED_NETIFS=trl:enl:s10

In our scenario we had the following setting for node hadavel:
RPC_UNSUPPORTED NETIFS=trl

For node hadave?2, the standby machine:
RPC_UNSUPPORTED_NETIFS=tr0

4. Use the option to configure the adapters with a user defined hardware
address. This enables the adapter that is taking over to use the same IP and
hardware address combination. Clients having worked with this server node
before have this IP/hardware address combination in their ARP (Address
Resolution Protocol) cache. So they will be able to work with the new node
after takeover without having to refresh their ARP cache, which would
otherwise require manual intervention on all client nodes. Following is our
adapter configuration on hadavel:

Change Attributes of Cluster Node or Adapter
Type or select values in entry fields.
Press Enter AFTER making all desired changes.
-Entry Fields*
**NOTE: Cluster Manager MUST BE RESTARTED
in order for changes to be acknowledged.**
Node ID 1
New Node ID 0 +#
Adapter IP label hadavel srv
New Adapter IP label []
Adapter function service +
Network name [tokenl] +
Network attribute public +
Adapter IP address [9.3.1.16]
Adapter Hardware address [0x10005a4f4110]
F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do

5. Install and configure DCE on the primary node. Be sure the shared volume
group with the shared DCE logical volumes is varied on and that you run
with the service IP address not with the boot address.

6. After successful installation/configuration, stop the DCE daemons using
/etc/dce.clean.

7. On the standby node only DCE installation is required. All necessary
configuration information for the takeover case is already on the shared disk.

8. On the standby node add the following entry to the /etc/services file:

Chapter 4. Administering DCE Cells 217

kerberosb 88/udp kdc

9. HACMP/6000 requires start and stop scripts for every application server to
be handled by takeover procedures. It is sufficient to use rc.dce and
dce.clean as DCE start/stop scripts. They perform all the necessary steps.
Make sure these scripts are correctly configured in the HACMP/6000.

10. Start the HACMP/6000 cluster manager on the primary node. Once up, start
the HACMP/6000 cluster manager on the secondary node. Since the restart
of DCE is one of the application server scripts, there is no need to explicitly
start DCE, it should come up when the cluster manager on the primary node
is started.

Note

This procedure is only valid for AIX DCE Version 1.3 or later, because the
DCE startup files were moved from /etc to /etc/dce which is on a shared disk.
The filenames in /etc are now symbolic links. In AIX DCE 1.2 you need to
copy these files as part of application startup script. Furthermore in AIX DCE
1.2 you need PTF U423300 for support of the environment variable
RPC_UNSUPPORTED_NETIFS.

218 Using and Administering DCE

Chapter 5. New Tools and Technologies

One purpose of this chapter is to describe what is new in IBM AIX Distributed
Computing Environment 1.3. Another purpose is to introduce useful technologies
or tools for DCE administrators in more detail than would have been suitable in
the previous task-oriented or how-to Chapter 4, “Administering DCE Cells” on
page 83.

We will cover the following topics in this chapter:

What is new in AIX DCE 1.3

DFS file server replication

NFS/DFS authentication translator

Login integration

o kM w0 D PRE

A mass user management tool
6. HACMP/6000 and DCE

In the previous chapters we showed how to use all these features without
explaining the details.

5.1 AIX DCE 1.3 Overview

The purpose of this chapter is to list and explain the most important new
features of AIX DCE 1.3. Some of the enhancements are performance oriented,
some extend functionality.

Two of the most important new features, DFS replicated file server and the NFS
to DFS Authenticating Gateway are covered in more detail in separate sections.
See 5.2, “DFS Replication” on page 224 and 5.3, “NFS to DFS Authenticating
Gateway” on page 227.

These are the new features which will be explained in the rest of this overview
section:

Security server replication

DFS fileset replication - see 5.2, “DFS Replication” on page 224

NFS to DFS Authenticating Gateway - see 5.3, “NFS to DFS Authenticating
Gateway” on page 227

Support for HACMP/6000 - see 5.6.1, “HACMP/6000 Support for DCE” on
page 273

Split configuration

Local RPCs

Environment variable RPC_UNSUPPORTED_NETIFS
Monitoring function in IBM NetView for AIX
Exportable data encryption facility CDMF

Stub size reduction

Preferred file server for DFS clients

[J Copyright IBM Corp. 1994 219

5.1.1 Security Server Replication

This feature is actually already part of OSF DCE 1.0.2, but was added later in
DCE for AIX. It has been delivered for AIX DCE 1.2 now as PTF#U431018. See
4.1.6.2, “Replicating the Security Server” on page 99 for an example on how to
configure it. See also the release notes that come with the PTF and with AIX
DCE 1.3 for various considerations and detailed explanations of the security
service in general.

The security registry database is copied as a whole to all defined replication
servers, where it is read-only. This is sufficient for getting tickets for dce_login
or DCE server access. The only time write access is needed, is when a new
principal, account, or group is added/changed/deleted.

Once you have installed one or more security replication servers, you can
indicate any of them when you issue mkdce -s <sec_server_name> <DCE_component>
to install new components. If you specify a replica server, a connection is made
to this server and its binding information is put into the pe_site file at the first
place:

cat /etc/dce/security/pe_site
/.../itsc.austin.ibm.com 007abb9c-8al5-1df3-b3c0-
10005aa8c755@ncacn_ip_tcp:9.3.1.127[]
/.../itsc.austin.ibm.com 007abb9c-8al5-1df3-b3c0-
10005aa8c755@ncadg_ip_udp:9.3.1.127[]

Since configuring a new component requires write access to the registry, a
connection is automatically made to the master security server. However,
usually you specify the master security server with the mkdce command.

If there are multiple security servers in a cell or after a new security replication
server has been added, the pe_site file can be updated to contain a list of all
available security servers:

#chpesite
This is an IBM provided tool.

5.1.2 Split Configuration

220

This feature which also includes a split unconfiguration separates configuration
of DCE client machines into a central DCE administrator part and a local system
administrator part.

Up to now we only had the full client configuration method. The administrator
who configured the client had to be logged in as the local root user and had to
provide the DCE cell_admin password to the configuration routine. This was
because entries had to be made for the new client in the security registry and
the CDS namespace which required write access.

These entries are still necessary, but can now be preconfigured by cell_admin
from any machine already configured in the cell. This is what the admin part of
the split configuration is all about.

The owner of a workstation who wants to be part of a DCE cell can now request
configuration from a central DCE administrator. Once the workstation is
preconfigured, the user can configure their machine as a DCE client without
having to know cell_admin's password. This is very convenient for very large
DCE cells.

Using and Administering DCE

The mkdce command has some new flags to allow for split client configuration:
mkdce -o configtype -h dce_hostname -i ip_identity

configtype Specifies what type of DCE client configuration is used:
full This is the default. It is the old-style
configuration where everything is done on the
client to be installed.

admin This is the admin part of the split configuration
where the cell_admin password has to be
known.

local This is the local part of the split configuration to

be executed on the client to be installed.
dce_hostname This is a specifically selected name for the new client under
which they will be known in DCE. This affects the machine
principal name in the security registry and the hosts entry in
CDS. It can be the same name as the TCP/IP name, which is
pretty long, though, when it contains the domain name.
ip_identity This is either the IP address or the TCP/IP hostname of the
machine for which a DCE client is being preconfigured.

5.1.3 Local RPCs

If DCE client and server applications are running on the same system,
communication now goes through a local UNIX socket rather than through a
network interface and the network layers. This prevents a server connection
from being established over the network either to another or to their own
machine, when the service is available on their own machine. This brings
performance improvements for client programs that run on a server machine.

If a client uses CDS to obtain binding handles, it will always get the local sockets
first, even with calls such as rpc_ns_import_binding_next() which returns
bindings in a random order.

This binding information is not stored in CDS, because otherwise all clients
would get these local sockets. It is rather the client's RPC runtime which
realizes that some of the handles it receives contain an IP address that
corresponds to the client’'s own system. It creates the local binding handles and
returns them to the caller in the first place, before those from CDS.

The following is an example of a local RPC socket compared to regular TCP and
UPD sockets. The example is the pe_site file of a system which runs a security
server. It could as well be the response to consecutive
rpc_ns_import_binding_next() calls, which return partly bound handles without
endpoints:

cat /etc/dce/security/pe_site
/.../jacques.itsc.austin.ibm.com 007abb9c-8al5-1df3-b3c0-
10005aa8c755@ncacn_unix_stream: []
/.../jacques.itsc.austin.ibm.com 007abb9c-8al5-1df3-b3c0-
10005aa8c755@ncacn_ip_tcp:9.3.1.127[]
/.../jacques.itsc.austin.ibm.com 007abb9c-8al5-1df3-b3c0-
10005aa8c755@ncadg_ip_udp:9.3.1.127[]

The endpoint for a ncacn_unix_stream binding handle is represented as full
pathnames to a UNIX socket file. A unique socket file is used for each
association established between a client and server process. By default, these
socket files are opened in the directory /var/dce/rpc/socket. Also by default, the

Chapter 5. New Tools and Technologies 221

name for each socket file is an object UUID, which ensures the uniqueness of
each filename. This means there is no chance that a socket file will ever be
used over again on two invocations of a DCE application.

Here is an example of a ncacn_unix_stream string binding:
ncacn_unix_stream:[/var/dce/rpc/socket/0063980e-357b-1e07-878b-10005a4f3bce]

When a well written DCE server application exits under normal conditions, it will
unregister its endpoints from the RPC endpoint map, among other things, before
it exits. The ncacn_unix_stream endpoints are user space files. Over time,
these socket files will accumulate. They are zero length files, but each one
occupies an i-node entry in the file system that it was created in. It is necessary
to have some means of cleaning up these stale socket files. This is done by the
RPC endpoint map.

By building their own string bindings, applications can define other filenames for
the socket files. However, this incurs additional overhead and the stale socket
files are not removed automatically. The rpc.clean command has to be called
together with the directory name that contains user created socket files.

5.1.4 Environment Variable RPC_UNSUPPORTED_NETIFS

This variable excludes a list of network interfaces from being used in DCE
binding handles. The following examples excludes xt0 and slO:

export RPC_UNSUPPORTED_NETIFS=xt0:s10

This environment variable should be set in the /etc/environment file before DCE
is configured. It prevents services from exporting their interfaces into CDS. This
is a very important instrument in the performance and availability considerations
for DCE cell layout. This is discussed in more detail in Chapter 3,
“Implementing DCE Cells” on page 43 and 4.1.1, “Preparing for DCE
Configuration” on page 84.

It is also required and used in HACMP/6000 configurations with DCE, because
HACMP/6000 has redundant interfaces and some of them must not be used by
regular applications. They need to be idle in the HACMP/6000 configuration such
that they are ready for takeovers.

5.1.5 Monitoring Function in IBM NetView for AIX

222

IBM NetView for AIX is the platform for network management based on simple
network management protocol (SNMP). It can be used for monitoring any kind of
TCP/IP devices and for managing devices that are able to support the SNMP
protocol. An SNMP agent is the interface to and from such SNMP capable
devices. SNMP agents have a database of system control variables which are
standardized. It is called the Management Information Base (MIB). An SNMP
management node can manage an SNMP agent node by changing MIB values.
SNMP agents can be configured to send traps or alerts to the manager node
when certain events happen or thresholds are exceeded.

IBM NetView for AIX provides a GUI to display network topologies, be alerted,
and respond to abnormal conditions present in their network. APIs on both
sides, the manager and the agent side, provide an opportunity to integrate new
applications into this management interface.

Using and Administering DCE

Applications integrated on the management side usually do not communicate via
SNMP protocol to the other nodes. They just run on the central node and have
their own method or protocol to get information from their clients. They may
even be able to manage their clients through the use of this proprietary method
or protocol.

Applications implemented on the SNMP agent side are called subagents. They
basically function like the agent itself. They support MIB values and generate
traps. They implement an extended MIB, which allows the manager node to
actually manage these subagents via a regular SNMP methods.

What does IBM NetView for AIX now do for DCE ?

The DCE monitoring function is implemented on the management side and does
not support SNMP. It uses traditional DCE tools to look up for example CDS
entries or RPC endpoint maps or to test availability of services. Even though it
cannot manage any DCE services or databases, it gives significant value to
customers such as:

DCE topology view providing location, function and role of DCE services in
the network. This information is dynamic and responds to changes in the
DCE or network configuration.

Monitoring the basic state of the DCE services in the network and indicate
fault conditions to the network administrator

5.1.6 Exportable Data Encryption Facility CDMF

The Common Data Masking Facility (CDMF) is an exportable user data
encryption facility that can replace the DES algorithm. DES may be exported
within a product, that does not export any interface to DES routines. So, DCE
internally continues to use DES, but as an option, users can install CDMF, if they
need access to encryption routines.

CDMF is an IBM patented encryption algorithm that utilizes the underlying DES
support in DCE without exposing it directly to the application. It uses the DES

algorithm but exposes a weaker 40-bit key to the application in contrast to the

full 52-bit DES key.

5.1.7 Stub Size Reduction

This performance enhancement produces smaller RPC stubs thus improving
throughput and reducing memory allocation needs. Since all DCE services and
applications are based on RPC, this should significantly improve overall
performance in the cell.

5.1.8 Preferred File Server for DFS Clients

The Cache Manager maintains ranks for file server machines. A file server
machine’'s rank determines the Cache Manager's preference for electing to
access replicas that reside on the file server machine over replicas that reside
on other file server machines. You can specify preferences for file server
machines to bias the Cache Manager's selection process.

This is an important feature for cells having WAN connections. It may help
reduce network traffic which could have occurred with random server selection.

Chapter 5. New Tools and Technologies 223

5.2 DFS Replication

5.2.1 Overview

This subject is already fully covered by the The Distributed File System (DFS) for
AIX/6000. However, since the availability of this feature is new, we will give a
general overview and guideline. The reader should be familiar with DFS in
general before reading this section.

For a step-by-step instruction on how to set up DFS replication see 4.2.3,
“Replicating DFS Server” on page 107.

DFS replication is the ability to have one or more read-only copies(replicas) of a
read-write DCE LFS(Local File System) fileset. The different copies are hosted
on multiple file servers. Therefore if one server machine goes down, you can
still access the information from other available servers.

Replication is supported only for DCE LFS filesets, not for non-LFS filesets. Two
types of replication are available with DCE LFS filesets:

Release replication
Scheduled replication

With release replication you manually propagate the update from the read-write
fileset server to the read-only fileset server(s) at the frequency you want. This
type of replication is useful, if the fileset seldom changes or if you need to
closely monitor the replication process.

With scheduled replication, you specify replication parameters that dictate how
often DFS is to automatically update replicated filesets with new versions of
source read-write filesets. This type of replication is useful if you prefer to
automate the process and do not need to track exactly when releases are made.
Nevertheless, both types of replication produce the same result: source filesets
are copied to different server machines. It is the duty of the system
administrator to choose which type of replication to use with each fileset.

The concept and the technology are well known but the availability of the product
is only in AIX DCE 1.3. For more information about the concept and
implementation of this feature, we suggest you to consult the DCE V1.3 for AIX
Administration Guide -- Extended Services and for more advanced configuration
see the ITSO publication The Distributed File System (DFS) for AIX/6000. In 4.2.3,
“Replicating DFS Server” on page 107 we describe how we set up DFS with
replication step-by-step. The following section gives a summary of the DFS
replication concepts.

5.2.2 Why Fileset Replication?

One of the advantages of DFS over another distributed file system is its ability to
replicate a fileset on multiple machines. Actually, when you replicate your
fileset, you can benefit from higher availability and load balancing.

Availability

Replication minimizes the effects of machines outages. If one machine
housing a DCE LFS fileset is unavailable, replicated versions of the filesets
are still available from other machines.

Load balancing

224 Using and Administering DCE

Requests for files of popular or frequently used DCE filesets are then spread
across different machines, preventing any one machine from becoming
overburdened with data requests.

These advantages are of course only valid for files which are accessed mostly
for reading, see below.

5.2.3 Which Files to Replicate?

Even though we can replicate any fileset, we have to be careful what we
replicate. If the type of access is read-only, replication works perfectly, whereas
filesets with frequent write accesses or updates should not be replicated. They
would cause either a lot of network traffic, because they would have to be
updated frequently, or even worse, the DFS clients would access outdated files.
If the filesets are accessed read-mostly, it is your decision how often writes
occur and how important it is for clients to always read the most current data. If
that is not critical, you may decide to replicate for availability and performance
(load balancing). The DFS namespace should be planned accordingly, so you
should put read-write files into read-write filesets and read-only files into
read-only filesets.

5.2.4 How Does Replication Work?

In order to become accessible by DFS clients, filesets need to be mounted.
Mount points have to be created in the DFS filespace. Figure 35 on page 226
shows several such mount points. Mount points show up as directory names.
Directories and files within a fileset can be accessed by specifying their full path
name. A full path name contains one or more directory names which are fileset
mount points.

There are two types of mount points which play an important role in the decision
whether the read-write or the read-only fileset is going to be accessed:

Regular mount point

This is the usual type, to which any type of fileset can be mounted. If the
read-write fileset name is mounted there, the cache manager will decide
which fileset to access based upon criteria explained below.

Read-write mount point

Only read-write filesets can be mounted and accessed via this type of mount
point.

The cache manager running in each DFS client system interprets the path name.
When it encounters a fileset mount point, it looks up information about the fileset
in the FLDB. Once it traverses a read-write type mount point it only accesses
read-write filesets, even if the underlying mount points are regular mount points
associated with replicated filesets. As long as the cache manager traverses
regular mount points, it accesses read-only filesets if they exist; if a read-only
fileset does not exist, it accesses the read-write fileset. Once it encounters a
read-write fileset that is not replicated, any underlying mount points will also
access the read-write fileset even if a read-only fileset exists.

If the cache manager does not find the fileset type it looks for, it returns an error.
In other words, for example, it never accesses the read-write fileset as a fallback
variant when none of the replicas are available.

Chapter 5. New Tools and Technologies 225

226

Before starting to replicate a fileset, we previously have to replicate the root.dfs
fileset on the same machine that physically houses this root.dfs fileset.

to use replication for any other fileset, we must create read-only versions

(replicas) of all filesets mounted above it at higher levels in the file system. This
means that we must create read-only copies of the filesets that contain its parent

directories.
[/ rw root.dfs fileset
' ? |
root.dfs.readonly
. T fileset
A B C D
Jusr usr sTC projectl
STC
bin local| | bin local| | bin local bin src
usr usrreadonly src.readonly projectl
fileset fileset fileset fileset
A = Read—write mount point bin local
B = Regular mount point
C = Regular mount point :_rlc .
D = Regular mount point 1lese

Figure 35. DFS Hierarchy File System

We can see in Figure 35 that the normal root directory mount point for the

root.dfs read-write fileset is /:/.rw when the replication is active. /: becomes the
access path to the root.dfs.readonly fileset. The two directories /: and /.rw are
identical, they show the same contents. The difference is, however, that when
you specify /:/.rw, you deliberately choose to access the read-write version of /:

and all underlying directories and files, even though you might have other
regular mount points and read-only filesets below the /: directory. An
administrator may want to unmount the /:/.rw for daily use, so that only the

read-only fileset is accessible and no changes can be made in the top directory.
Unmounting a fileset actually means deleting its mount point.

Note in Figure 35:

In order

/:Iprojectl is mounted via a regular mount point and is not replicated. This
read-write fileset is always accessible in read-write mode via /: or /:/.rw.

[:lusr is a regular mount point for the usr fileset. Since usr is replicated,
only the usr.readonly fileset is accessed via the /:/usr path.

[:/.usr is a read-write mount point for the usr fileset. The read-write fileset
can now be accessed by specifying the pathname /:/.usr, or via /:/.rw/usr or
[:l.rw/.usr. It is especially useful, when /:/.rw is deleted for daily use.

/:Isrc is a regular mount point for the src fileset. It accesses the
src.readonly fileset only, because it is a replicated fileset and the
administrator decided to not create a read-write mount point. If changes

Using and Administering DCE

need to be applied in the src fileset, a read-write mount point needs to be
temporarily created or access has to go via /:/.rw.

DFS clients are caching fileset data, but also fileset information, which means
path name to fileset associations. Assume having had a read-write fileset
mounted at a regular mount point for a while and DFS clients accessing it. Then
you decide to replicate it with the intention to force further access to the
read-only fileset. Since DFS clients are caching, they will continue to access the
read-write fileset after you have created the replica as long as they work in that
directory and the cache information is still valid. The cache information expires
after one hour, if the directory is not the working directory.

To make a replica available on a DFS client, the following steps need to be
performed:

1. Force an update of read-only fileset containing the parent directory with fts
release or fts update. If the regular mount for a new replica had existed
before, you need not do that, the read-only fileset containing the mount point
should be up-to-date.

2. Change the working directory to a directory outside of that fileset, if it was
accessible before the replication.

3. Refresh the cache’s fileset information with cm checkfilesets.

The problem, that DFS clients are able to access a read-write fileset via a
regular mount point even though it is replicated, can be avoided, if you create
the replica before you define the mount point. For details about configuration
steps see 4.2.3, “Replicating DFS Server” on page 107.

5.3 NFS to DFS Authenticating Gateway

This section provides the description of the NFS to DFS Authenticating Gateway,
sometimes also called NFS/DFS Translator. This new functionality provides DFS
the ability to interoperate with NFS (Network File System). We do not explain
NFS, users are supposed to be familiar with it.

For a step by step configuration example of authenticated DFS access see 4.7.4,
“Configuring DFS Access from NFS Clients” on page 211.

5.3.1 Introduction

We know that many customers are currently using NFS as a technology to
distribute file systems across the network. Many of their NFS client systems are
0OS/2 clients or even more often DOS/Windows workstations. For these platforms
DFS is not available yet. These customers need a transition period within which
they can access the DFS filespace from their non-DFS or even non-DCE
workstations. This has actually been possible since DFS was released. DFS
clients can export their directories to NFS, but since NFS users are not
authenticated they obtained very limited access rights, they are considered
unauthenticated users.

The new functionality known as NFS/DFS Authenticating Translator or NFS/DFS
Translator effectively provides NFS client users access to the DFS filespace. The
NFS/DFS translator provides a mechanism for establishing a bridge between the
diverse authentication information by allowing a mapping to be established

Chapter 5. New Tools and Technologies 227

between an NFS Client and an authenticated DCE principal. See Figure 36 on
page 228.

sys2

DFS
Client

/" _\ NE‘S'" ‘UnPumenﬁcawd sys3

c ~
Network exports /... \
| NES
NFS/DFS ‘—'—. Client

Authenticator | Authehticated

Figure 36. DFS/NFS Translator Architecture

Two scenarios are possible for sys3: it can be part of the cell, but DFS is not
available on it, or it is not part of the DCE cell, because not even DCE is
available on it.

5.3.2 Scope of Service

5.3.3 Concept

The primary function of the NFS/DFS Translator is to provide authenticated DFS
access from NFS clients. The NFS client views the same DFS namespace, the
same file system hierarchy, as the DFS client and we can for example export
parts of the file systems to NFS. This allows NFS client users who do not have
DFS ports for their hardware platform to participate in DFS file-sharing.

The NFS/DFS Translator does not provide complete DCE services from the NFS
client side. DCE services such as directory services, security services and RPC
services are not available. Tools to modify ACLs or DFS administrative
commands are not available either to NFS clients.

The real goal of the NFS/DFS Translator is to provide authenticated access to the
DFS filespace from NFS client machines which do not need any extra software.

The standard DFS technology provides NFS access to the DFS filespace by
allowing an NFS server to export the DFS client's view of the global filespace to
an NFS client machine. This is achieved by exporting the root directory "/..." or
any underlying directory such as /.../<mycellname>/fs/mydirectory to NFS.
However, this functionality is limited to allowing only unauthenticated access to
the DFS global filespace because NFS is unaware of DCE Kerberos-based
authentication. As a result, anyone who is not identified as a DCE principal and
makes an NFS request to the DFS filespace is treated as an anonymous user. In
order to provide authenticated access to the DFS filespace from NFS, an
additional agent is necessary to map the NFS-provided authentication

228 Using and Administering DCE

information into DCE authentication information suitable for issuing an
authenticated DFS request. In other words, an NFS user needs to be mapped to
a DCE principal.

The role of the translator is to map an incoming NFS client request credential
into a credential representing a DCE principal. The NFS server then makes the
file system request through the DFS client’s virtual file system with the mapped
credential so that the request looks to the DFS client as if it were made by a DCE
authenticated process.

5.3.3.1 Functionality and Implementation

NFS and DFS both provide service from inside the kernel. Since the NFS/DFS
Translator needs to reference NFS and DFS services which are not exported to
user processes, the translator must also reside inside the kernel. On AIX
Version 3, this is achieved by adding a kernel extension.

DFS like NFS is a layer underneath VFS (Virtual File System). VFS is an
abstraction of a physical file system implementation. It provides a consistent
interface to multiple file systems, both local and remote. A virtual node (v-node)
represents access to an object within a virtual file system. Associated with each
v-node is a vector of procedures (read, write, create, remove), the vnodeops.
The NFS server performs the service indicated in a received request by calling
the vnodeop operations. Since the DFS client is integrated into the VFS model, it
also provides a full set of vnodeops. These vhodeops are used by the NFS
Server to export the file system as seen from the DFS client.

5.3.3.2 NFS/DFS Translator Administration Model

DFS uses DCE Kerberos-based authentication. The role of the translator is to
map an incoming NFS client request credential into a credential representing a
DCE principal. NFS/DFS Translator administration requires commands or
services to administer authenticated mappings:

Authenticate a DCE principal to be associated with an NFS host IP address/
UID pair

Register NFS/DFS translation mappings on the NFS/DFS Translator site, also
known as a translation point

Query registered authentication mappings

Remove authentication mappings from the translator

The dfsiauth command is the tool for administering these functions. It is part of
the translator and resides therefore only on the machine running the translator.
To access this command the DCE user who exports their files must login to the
translator machine. They can do so on a local terminal or via a remote login
utility (telnet, rlogin). The command can be executed and then the session can
be terminated. After this session, the authentication mapping would be started
and NFS client users can mount the exported directory to a free local directory
and then begin to access the DFS filespace.

Credentials can expire after a certain time (10 hours by default). When DCE
credentials expire, the translator user will not be able to use the kinit command
to renew his credentials. From the user’s point of view, when his DCE
credentials expire, he will start to experience access permission errors because
he becomes an authenticated user. To re-authenticate, the user must use the

Chapter 5. New Tools and Technologies 229

translator registration command once again to register the mapping. Then he
can continue to access the DFS filespace.

On the NFS client machine, you don't need to unmount and remount the file
system.

5.3.4 Administration Tasks for the System Administrator

230

Administration and configuration of the NFS/DFS Translator involves steps to be
performed by the AIX system administrator and by the DCE users who are willing
to make their DCE authentication available to the NFS users.

This section covers the administration tasks to be executed by the system
administrator on the translator machine. For the administration tasks of the DFS
users who make their data accessible from NFS consult 5.3.5, “Administration
Tasks for the DFS User” on page 232.

Eventually to provide file access to the end users, a system administrator on the
NFS client machine must mount the exported DFS directory. This is described in
5.3.6.1, “Using the Translator from a UNIX NFS Client Machine” on page 234.

The following are the tasks of a system administrator to perform on the
NFS/DFS Translator site:

Installing and Starting the NFS/DFS Translator

Exporting DFS to NFS

Managing Expired Authentication Mappings

NFS anonymous mappings

Local ID differences

5.3.4.1 Installing and Starting NFS/DFS Translator
The first step is to install the package "dcedfsnfs.obj” which includes:

AlIX kernel extension for the NFS/DFS Translator
dfsiauth command to register(add), delete, and list authentication mappings
libdceiauth.a user library
dcedfs/dceiauthapps.h include file for application development
System Management Interface Tool (SMIT) screens for NFS/DFS Translator
management
Then provide (start) NFS/DFS Translator service:

1. Verify DCE/DFS and NFS are configured and running on your system.

2. Load dfsiauth.ext (the kernel extension) by running the /etc/rc.dfsnfs script
file.

The translator can also be started from the SMIT menu by calling smit dfsnfs.

Put the /etc/rc.dfsnfs script into the /etc/inittab file to support automatic startups.
It should be added after the rc.dce and rc.nfs lines in the inittab file, because it
needs them to be active.

Using and Administering DCE

5.3.4.2 Exporting the DFS Filespace to NFS

The DFS filespace should be made available to NFS clients by NFS-exporting the
DFS filespace. This means that any portion of the DFS file tree can be exported
just like any regular AIX directory.

The top of the DCE tree is /..., global root. Below that is the cell name and the
junction point into DFS (/.../cellname/fs). Any portion of this part may be
exported. By exporting /..., NFS clients will have access to other cells for which
intercell registration is set up. However, in most cases, access to the foreign
cells will be unauthenticated access. By exporting /.../<cellname>/fs, NFS
client accesses will be limited to a particular cell. Administrators should
consider these options in deciding what part of the DFS filespace is to be
exported.

However, when you export the DFS filespace to NFS, you can expose it to a
decreased level of protection due to the less secure nature of the NFS/RPC
compared to the DCE/RPC. Administrators should take precautions against
forged NFS requests, replays, and IP address spooling. They should be careful
by exporting only to a specific group of machines and not to everybody.

After considering these alternatives, the DFS filespace can be exported to NFS
clients.

5.3.4.3 Removing Expired Authentication Mappings

Credentials can expire. See also 5.3.5.6, “Managing Expired Authentication
Mappings” on page 234 for explanations how to renew them. Expired mappings
are removed by the translator.

In addition, a local system administrator can explicitly clean all expired
mappings by using the following dfsiauth command:

#dfsiauth -flush

5.3.4.4 NFS Anonymous Mappings

An NFS server by default maps root (UID=0) requests to the nobody (uid=-2)
remote requests. NFS administrators can choose to map remote root to local
root. With the NFS/DFS Translator, you can also do the same thing by modifying
the /etc/exports file. For example, if you have a DCE principal root with UID=0
and you need access to root's DFS files from an NFS client, then:

1. The NFS anon mapping must be set to UID 0.

2. An authentication mapping for UID=0 must be set for the DCE principal root.

5.3.4.5 Local UID Difference

The NFS/DFS Translator adds the authentication information to NFS requests
before they are passed to DFS. This authentication mechanism allows the NFS
request to become associated with some DCE principal. The DCE value for the
UID associated with the principal may be different from the name and UID of the
NFS client. In fact any NFS UID can be mapped to any DCE known principal
identifier. This difference can lead to unexpected behavior. For this reason, it is
highly recommended to synchronize your client's local or NIS maintained
/etc/passwd file with the DCE registry or vice versa.

See 4.7, “Integrating an NFS/NIS Environment” on page 202 which demonstrates
ways of making UIDs unique.

Chapter 5. New Tools and Technologies 231

5.3.5 Administration Tasks for the DFS User

232

As explained in the previous section, administration and configuration of the
NFS/DFS Translator involves steps to be performed by the AIX system
administrator and by the DCE user who is willing to make his DCE authentication
available to the NFS users.

This section covers all steps that these DCE users have to execute, which is
basically the dfsiauth command. However, our recommendation is to create one
or more special users operated by the system administrator, because we
suppose that you would not want to leave these tasks up to regular users.

Eventually to provide file access to the end users, a system administrator on the
NFS client machine must mount the exported DFS directory.
Here are the tasks of a DFS user to perform on the NFS/DFS Translator site:
Registering (add) authenticating mappings
Deleting authentication mappings
List existing authentication mappings
Setting @sys and @hosts values within a mapping

Managing expired authentication mappings

5.3.5.1 The dfsiauth Command

The dfsiauth command can be used by either the AIX super user or by a normal
AlX user, if they have a DCE account. This command is only available on the
system where the NFS/DFS Translator is running. To use it, a user must login
into that system, either locally or remotely. Before using this command, you
must have an account in the DCE security registry and be logged in to DCE.

$dfsiauth -7

dfsiauth -add [-overwrite] | -delete -r remote host -i numeric_uid
[-u principal] [-p password] [-s sysname] [-h host]
Usage: dfsiauth -list [-u principal] [-p password] | -flush

The meaning of the options is the following:

-r remote_host Hostname of the machine requesting authenticated access
-i remote_uid UID of the user requesting authenticated access

-u principal DCE principal to authenticate as

-p password Password of the DCE principal

-S syshame Associate parameter sysname with the @sys property for the
input host/UID pair

-h hostname Associate parameter hostname with the @host property for the
input host/UID pair.

-add Add the specified mapping information)

-delete Delete the specified mapping information

-overwrite Change information about an existing mapping. Option only
valid with the -add option

-list List the registered authentication mappings)

-flush Remove expired authentication mappings

For more information, we suggest reviewing the DCE NFS to DFS Authenticating
Gateway V1.3 for AlX.

Using and Administering DCE

5.3.5.2 Registering Authentication Mappings

This task is to register your authentication mapping. In order for an NFS client
user to have authenticated access to DFS, an authentication mapping must exist
which maps the NFS client machine’'s IP address and remote UID to a DCE
principal which has the proper access rights to DFS.

If the authentication mapping does not exist, DFS will determine the NFS client's
request for data is unauthenticated. This is equivalent to a DFS user not having
previously performed a dce Tlogin.

The following command adds an authentication mapping for user ID 107 of NFS
client system ev5, who will be authenticated as DCE principal brice:

$dfsiauth -add -r evbs -i 107 -u brice

Note that this command is normally executed by the user brice, but the system
administrator can also use this command on behalf of brice, if user brice lets
this administrator know his (brice's) DCE password.

5.3.5.3 Display Authentication Mappings
You can display the translation mappings by using the following command:

$dfsiauth -1ist -u brice

Host Uid Principal @sys @host Expiration

evéb 107 brice 5/27/94 00:30

5.3.5.4 Unregistering Authentication Mappings
When you no longer need your authentication mapping, you can remove it by
using the following command:

$dfsiauth -delete -r ev5 -i 107 -u brice

5.3.5.5 Setting @sys and @host Variables

DFS uses the @sys and @host variables to access operating system specific and
host specific files and directories, if the administrator has set them up. The DFS
client expands @sys and @host names that it encounters to a defined system
name or hostname.

The NFS/DFS Translator also has the capability to make these pathname
substitutions, if the @sys and @host values are registered for a host/UID pair.
To register a host/UID pair, you use the dfsiauth command with values for @sys
and @host substitution options.

The following command registers the user with UID 107 from remote host ev3 as
authenticated DCE principal brice. The sysname rs_aix32 is also associated with
this mapping.

$dfsiauth -add -r ev3 -i 107 -u brice -p my_passwd -s rs_aix32

dfsiauth:<ev3, 107> mapping added

DCE principal:brice

System Type (@sys)rs_aix32

For more information, we suggest reviewing the DCE NFS to DFS Authenticating

Gateway V1.3 for AlX.

Chapter 5. New Tools and Technologies 233

5.3.5.6 Managing Expired Authentication Mappings

As we previously said, credentials can expire. When DCE credential tickets
expire, the NFS client user is not notified. On the NFS client machine, it will

appear to the user that authenticated access has been suddenly lost. They start

to experience access denied errors. If this happens you (who are a known DCE

principal user) should renew the ticket by loging in to the NFS/DFS Translator
site. There you must reregister your authenticated mappings by using this
command:

$dfsiauth -add -r ev2 -i 107 -u brice -p my passwd -s rs_aix32

You will notice that it is exactly the same command as was entered to first set
up the mapping.

In addition, the NFS/DFS translator will collect the expired authentication
mappings and remove them from the authentication mapping table to avoid
overrunning the translator with expired mappings.

In addition to that, a local system administrator can explicitly clean all expired
mappings as outlined under the system administrator’'s tasks.

5.3.6 Making DFS Access Available on the NFS Clients

234

As outlined above you need to set up a mapping on the translator machine

before you can get authenticated access from any remote NFS client machine.
The following three options achieve this before mounting an exported directory

to a local one:

Make a remote login (telnet, rlogin) to the server machine and issue the
dfsiauth command to register your authentication mapping

Login locally on the server machine and do the same task
Let a system administrator on the translator machine know your DCE

password to do this for you

As you know, when you perform telnet or rlogin, you expose your password
across the network. So we recommend using this method only in a LAN
environment, if at all.

For all systems, check that TCP/IP and NFS are running correctly before trying to
mount a directory.

5.3.6.1 Using the Translator from a UNIX NFS Client Machine
If you have already registered your authentication mappings on the NFS/DFS
translator, you issue the mount command:

#mount -v nfs -n ev5 /:/remote_dir /your local dir

5.3.6.2 Using the Translator from an OS/2 NFS client
There are two ways two mount the DFS filespace from an OS/2 machine:

1. Mount by using the login ID and password.
2. Mount by not providing the login ID and password.

In this case, you must set some parameters on the OS/2 machine. For
example, if you have login ID 107 on the server machine and you belong to a
group ID number 100 in the same system, you must do this on the OS/2
system before mounting:

Using and Administering DCE

>set UNIX.UID=107
>set UNIX.GID=100

Issue the command:

c>mount E: nfs_server_machine:/:/remote_dir

5.3.6.3 Using the Translator from a PC-NFS Client

If the translation mapping is already done, issue this following command:

c>mount E: nfs_server machine:/:/remote dir

5.4 Single Login/6000

Single Login/6000 is a complementary solution offering for DCE and AIX user
integration. It was developed and enhanced for several customer projects in the
banking area. DCE offers an excellent security service. However, it is not
integrated into AIX and the standard DCE login command dce login does not
enforce any password policy.

Single Login/6000 was developed on the user API level and is not integrated into
the AIX kernel nor in any AIX authentication method. That is why accounting and
especially auditing is not 100 percent proper. Most auditing events are reported
to the correct user ID, though. See 5.4.3, “AlX and Single Login/6000” on

page 238 for more details about this.

However, there is a long list of features contained in Single Login/6000, which
make it a superior solution to the standard dce Togin command. It contains
everything needed to make DCE user administration and control easier in a
large DCE environment such as:

Only one (integrated) login procedure for AIX and DCE
Users are centrally managed (defined only once in DCE)
Cellwide control over the number of logins for a user
Cellwide control who is logged in where

User gets an AlX account on any machine they log in to
Home directory in DFS

Supports a structured user namespace with a department concept
XDM support

Support for xlock and xautolock

Configurable password restrictions

Support for local accounting and auditing

Account locked after configurable amount of failed logins
Support for inter-cell login

Full NLS support

Full installp support

Full SMIT support

For more information (more details, latest versions, ordering, prices) contact the
following address:

IBM Deutschland Entwicklung GmbH
Customized Banking Technology
att. Hans-Juergen Dittgen
Schoenaicher Str. 220
71032 Boeblingen
Germany

Chapter 5. New Tools and Technologies 235

Tel. xx49-7031-16-4867
Fax xx49-7031-16-4572
IBMMAIL: DEIBMQVR at IBMMAIL
Vnet: DITTGEN at BOEVM4

The following sections give more information about Single Login/6000:

5.4.1, “Single Login/6000 Features Overview”
5.4.2, “Possible Enhancements for Single Login/6000” on page 238
5.4.3, “AIX and Single Login/6000” on page 238

In 4.5.6, “Configuring Single Login/6000” on page 180 we give instructions on
how to configure the Single Login/6000 environment and users.

5.4.1 Single Login/6000 Features Overview

236

The following are the product highlights as listed in the above introductory
section:

Only one (integrated) login procedure for AIX and DCE

The user has to login only once. He always has the same UID in DCE and
AlX.

Users are centrally managed (defined only once in DCE)

Users are defined only once. You do not have to define each user as a
principal in the DCE registry and in every AIX system. Each user is defined
in the DCE registry only.

Cell wide control over the number of logins for a user

The number of network wide logins for a user can be limited and controlled.
For example if the maximum number of logins for a user is defined as two,
then Single Login/6000 enforces this limit cell wide and the user can login no
more than twice or from two machines in the cell.

Cell wide control who is logged in where

Each defined Single Login/6000 user has a CDS object to store information
when and where they logged in. So, an administrator can check where in
the cell users are logged by listing CDS contents.

The user gets an AlX account on any machine they log in to

1. The user is authenticated against the DCE registry

Password expiration date is checked; a change is enforced if necessary
Password restrictions are applied and checked for the new password
Login time and location are centrally registered

AlIX account information is generated

Login is granted

o0k wN

Home directory in DFS

It is not impossible to have a DFS home directory without Single Login/6000,
but it is much easier than with the standard dce_login command, where DFS
is not available for the user at the time AIX makes their home directory the
current directory.

Supports a structured user namespace with a department concept

Single Login/6000 supports a structured user namespace. Departments or
regional offices can be defined. If you decide to implement departments,
then each DCE node needs to be defined in a department. When users are

Using and Administering DCE

added, you need to specify to which department they belong. They can then
login to any machine in their department. If they are defined as global
users, they can even login on any machine in the cell.

Single Login/6000 users have a CDS entry to control their current location
and number of logins. The Single Login/6000 CDS namespace is also
structured according to the departments. Each department has a CDS
directory and its users have a CDS object in that directory. The DCE
principal and account name reflects this structure, it is a qualified name,
which would allow for multiple occurrences of the same name in different
departments.

XDM support

The Single Login/6000 login dialog is started when a user logs in with a
global AIX user ID. The Single Login/6000 client program is defined as the
initial program of the global AIX user. This program is started when the user
logs in from an ASCII login screen.

If the global AIX user account is being used for login via XDM, the .Xsession
file is used to start the Motif version of the Single Login/6000 login dialog,
which does the same job as the ASCII version. It includes a dialog for
password renewal.

Current support is for XDM release 11.5.
Support for xlock and xautolock

Support for the xlock function is separately available. It checks the password
with the DCE registry rather than with the local /etc/passwd files. In
addition, an xautolock function is available which automatically invokes xlock
after a certain time of inactivity.

Configurable password restrictions

Password rules such as minimum length, minimum number of alphabetic
characters, minimum number of characters different from last password, and
maximum number of repetitions of a character can be configured and are
valid cellwide. When the user is requested to change his password, these
rules are enforced.

Support for local accounting and auditing

Since the AIX login is started with a global user ID, some of the actions are
reported to that ID. As soon as the DCE authentication is over and the AIX
effective UID is set, most actions are correctly reported.

See also 5.4.3, “AlX and Single Login/6000” on page 238 for information on
AlIX auditing with the use of Single Login/6000.

Account locked after configurable amount of failed logins

The maximum number of consecutive failed logins can be configured
cellwide. When a user login fails because an invalid password was
presented, the counter is incremented for that user. Since it is administered
in a CDS object, it is enforced cellwide. Once the user succeeds to login
before his account is locked, his counter is reset.

Support for inter-cell login

If users are defined as global users, they are allowed to login from any
machine, even from machines in a foreign cell. On the Single Login/6000
login dialog they must specify their home cell, which is the cell in which they
have an account in the security registry. The request goes to the home cell,

Chapter 5. New Tools and Technologies 237

and when they are authenticated there and are global users, they get access
to the AIX machine at which they started the login procedure. They get an
/etc/passwd entry just as they would on a machine in their home cell.
However, since they are not working in their home cell, their network
credentials are those of foreign users for this cell.

Full NLS support
Full installp support

Single Login/6000 is delivered as an installp object with product history
information.

Full SMIT support

All Single Login/6000 administrative commands are supported with SMIT
panels.

5.4.2 Possible Enhancements for Single Login/6000

When we tested Single Login/6000 we came across some important items that
need to be enhanced to make it more highly available and not just usable on the
AlX platform.

According to the developers of the product these items can be done without too
much effort, but it would only be done on a request basis.

0OS/2 support

OS/2 does not need an integrated login because it is a single user system.
However, for all the other nice features such as the overview on who is
logged into the cell, for the password rules and restrictions, and the
department concepts of Single Login/6000, the client needs to be ported to
0S/2.

Support for other DCE platforms

Single Login/6000 is written with standard DCE calls, so porting to other
platforms should be no big deal.

Single Login/6000 server replication

The Single Login/6000 server is exported to the CDS namespace in an RPC
group. From that perspective it would be easy to implement replication. A
second server could be started which exports its interface into CDS and the
client would randomly get one or the other server addresses.

However, since the Single Login/6000 server writes to CDS objects and holds
a context handle with each Single Login/6000 client, some changes would be
necessary in the way CDS is updated.

Today, if the Single Login/6000 server is not available, the users can still
login, but the central user information is not updated. If the Single
Login/6000 server fails and comes back to operation, the login counters are
reset.

5.4.3 AIX and Single Login/6000

238

Single Login/6000 is integrated in AlX at the user level. There are no hooks into
the kernel. As described in 4.5.6, “Configuring Single Login/6000” on page 180 a
global user in the /etc/passwd file is created, which is shared by all users:

dce:!:203:200:SingleLogin/6000 global userid:/home/dce:/opt/si_Togin/single login

Using and Administering DCE

The initial program of this global user activates the client portion of Single
Login/6000. Generally this user has no password, so after entering the user
name dce, the user directly gets to the Single Login/6000 login dialog. We
experienced several small problems, but overall the application was working
quite well. We configured four users al, a2, a3 and a4.

If you run Tast, you will only see the user dce logged in, no evidence of the rea
user working in the system.

root pts/2 9.3.1.74 Wed Jun 01 19:06 still logged in.
dce pts/15 evl Wed Jun 01 19:03 - 19:06 (00:02)
dce pts/13 evl Wed Jun 01 19:00 - 19:06 (00:05)
dce pts/12 evl Wed Jun 01 18:58 - 19:06 (00:07)
dce pts/11 evl Wed Jun 01 18:56 - 19:06 (00:09)
dce pts/11 evl Wed Jun 01 18:53 - 18:54 (00:00)
dce pts/10 evl Wed Jun 01 18:51 - 19:06 (00:14)
dce pts/8 evl Wed Jun 01 18:50 - 19:06 (00:16)

So, possibly all the account subsystem commands might have the same
problem, we did not test accounting any further.

When the user a4 enters into the system, a line in the /etc/passwd is generated
ad:*:204:12:Single Login / 6000 defined user::

No entry or stanza has been added to the /etc/security/passwd for user a4. So,
a user who wants to login into AIX using a4 will be rejected:

AIX Version 3

(C) Copyrights by IBM and by others 1982, 1993.

login: a4

ad' s Password:

3004-007 You entered an invalid login name or password.
login:

The audit subsystem generated some messages that might mislead system
administrators who are used to running audit in AIX. We configured audit in the
/etc/security/audit/config file for the users dce, al, a2, a3 and a4 and verified, if
some of the kernel, authentication, file system, and command events in the
/etc/security/audit/events were accounted to the right user. We have always
used the same command:

auditstream | auditselect -e "(event == EVENT TO TRACE || event == USER Login) \
8% (login == dce || login == a4)" | auditpr -t0 -heRl

where EVENT_TO_TRACE can be one of the following:

PROC_AuditID
PROC_RealUID
PROC_RealGID
PROC_Environ
PROC_Create
PROC_Delete
PROC_Execute
PROC_SetSigna
PROC_Limits
PROC_SetPri

Chapter 5. New Tools and Technologies 239

240

PROC_Privilege

USER_Logout

USER_SU

CHECK_INITTAB

We did this for the user names a4 and dce. Here are the results:

auditstream |

auditselect -e "(event==PROC_AuditID || event==USER Login) \

8% (login == dce || login == a4)" | auditpr -t0 -heRl

USER_Login
PROC_AuditID
PROC_AuditID

auditstream |

0K dce
0K dce
0K a4

auditselect -e "(event==PROC_RealUID || event==USER_Login) \

8% (Togin == dce || Togin == a4)" | auditpr>

USER_Login
PROC_RealUID
PROC_RealUID

auditstream |

0K dce
0K a4
0K a4

auditselect -e "(event==PROC_RealGID || event==USER Login) \

8% (login == dce || login == a4)" | auditpr>

USER_Login
PROC_RealGID
auditstream |

0K dce
0K dce
auditselect -e "(event==PROC_Environ || event==USER Login) \

8% (login == dce || login == a4)" | auditpr>

USER_Login
PROC_Environ
PROC_Environ
PROC_Environ

auditstream |

0K dce
0K dce
0K dce
0K dce

auditselect -e "(event==PROC_Create || event==USER Login) \

8% (login == dce || login == a4)" | auditpr >

PROC_Create
USER_Login
PROC_Create
PROC_Create
PROC_Create

auditstream |

0K a4
0K dce
0K dce
0K a4
0K a4

auditselect -e "(event==PROC_Delete || event==USER Login) \

8% (login == dce || Togin == a4)" | auditpr >

USER_Login
PROC_Delete
PROC_Delete

<logout>

PROC_Delete
PROC_Delete
PROC_Delete
auditstream |

0K dce
0K a4
0K a4
0K a4
0K dce
0K a4

auditselect -e "(event==PROC_Execute || event==USER Login) \

8% (login == dce || login == a4)" | auditpr>

PROC_Execute
USER_Login
PROC_Execute
PROC_Execute
PROC_Execute
PROC_Execute
PROC_Execute
auditstream |
&& (login ==
PROC_SetSignal
PROC_SetSignal

Using and Administering DCE

0K a4
0K dce
0K dce
0K dce
0K a4
0K a4
0K a4

auditselect -e "(event==PROC_SetSignal || event==USER Login) \
dce || Togin == a4)" | audit

0K dce

0K dce

< a lot of messages of this only type for both dce and a4 >

PROC SetSignal 0K dce
PROC_SetSignal 0K ad
PROC SetSignal 0K ad

auditstream | auditselect -e "(event==PROC_Limits || event==USER Login) \
8% (login == dce || Togin == a4)" | auditpr >

USER_Login 0K dce

auditstream | auditselect -e "(event==PROC_SetPri || event==USER Login) \
8% (Togin == dce || Togin == a4)" | auditpr >

USER Login 0K dce
PROC_SetPri 0K dce
PROC_SetPri 0K dce
PROC_SetPri 0K dce
PROC_SetPri 0K dce
PROC_SetPri 0K ad

auditstream | auditselect -e "(event==PROC Privilege || event==USER Login) \
8% (login == dce || Togin == a4)" | audit>

PROC Privilege OK dce
PROC_Privilege OK dce
PROC Privilege OK dce
USER_Login 0K dce
PROC Privilege OK dce

auditstream | auditselect -e "(event==USER Logout || event==USER Login) \
8% (login == dce || Togin == a4)" | auditpr >

USER_Login 0K dce

auditstream | auditselect -e "(event==USER SU || event==USER Login) \
8% (Togin == dce || Togin == a4)" | auditpr -t0 >

USER Login 0K dce

USER_SU 0K as

auditstream | auditselect -e "event == CHECK_INITTAB && login == a4" | \

auditpr -t0 -heRl

CHECK_INITTAB 0K a4

As you can see from the results, some of the events give messages that might
be misleading. Sometimes only user dce is accounted for some actions and not
a4. For instance the USER_Login event is always associated with user dce and
never with a4. The USER_Logout event never shows up, when a4 logs out, not
even under user dce.

When the user a4 tries to call the su command, it gets correctly accounted for it.
When a4 tries to read the /etc/inittab file, the event CHECK_INITTAB is
associated to him and not to dce.

The last event CHECK_INITTAB is not part of the preconfigured events of AlX.
We added it. It records an event when somebody tries to look into the
/etclinittab file.

Overall the audit works fine, but the consistency of the event messages is not
among the best features of this application. Single Login/6000 sets the real UID,
but not the login UID. A system administrator who uses audit in AIX has to set
up new events. This would enable him to track down when a user logs in and
out or might help him to find a new way to interpret some of the kernel events,
which are now associated partially to dce and partially to a4.

The file system and command events such as CHECK_INITTAB and USER_SU
are associated correctly with user a4.

Chapter 5. New Tools and Technologies 241

An additional suggestion to the author of this application or the system
administrator of a DCE cell is to add all the si_login command files and
programs to the AIX Trusted Computing Base (TCB). This would have to be
done in the /etc/security/sysck.cfg database. After that the TCB bit has to be set
to on for si_login in the following way:

chtcb query single_Tlogin
single_login is not in the TCB
chtcb on single_login

chtcb query single Togin
single_login is in the TCB

#

5.5 User (and ACL) Management

242

User management encompasses tasks such as adding, modifying, deleting
users, accounts, and groups. The user namespace or the policy according to
which user names and user identification numbers (UIDs) are assigned has to be
carefully planned. It might be necessary to keep the names and UIDs unique
over multiple cells belonging to the same company. Please refer to 2.4,
“Planning the User Namespace” on page 33 for planning information.

— Group Management

What is mentioned about users and UIDs throughout this chapter is also true
for groups and group identifiers (GIDs). They have to correspond between
DCE and all involved UNIX systems. If you migrate from other environments,
the GIDs have to be unified and defined in DCE with the same number they
had in the old environment.

Our tools were first made and described for user management only. They
were only supposed to show a way for solving the problem of mass user
management. Since it was a last minute decision to also create the group
management commands for your convenience, they could not be documented
in the same detail as the user management commands. A separate section
5.5.3, “Group Management” on page 254 will briefly describe the concepts
and commands for group management.

Managing single users is well supported within SMIT. Easy to use menus allow
one to add, modify, and delete users, accounts, groups and organizations.
However, if a security registry has to be populated with dozens or hundreds of
users at the same time, using SMIT menus is not practical anymore. The
following situations require tools that are able to handle a lot of users:

First DCE installation

Migration from ONC, or NFS/NIS environments
Global changes within a cell

Splitting and joining cells

The purpose of this section is to show how to manage multiple users at the
same time. We created sample tools to add, modify and delete a lot of users.
Information about users is managed from a so called central repository. This
central repository is a directory and consists of a file for each user, the user
definition file (UDF). This file can be generated with default values or from
existing sources such as an /etc/passwd file, NIS or a DCE cell. The
administration tools then access these files and maintain a state for each user.

Using and Administering DCE

Values can be modified when the user is in the SUSPENDED state. The resulting
changes will be applied upon reenabling the user.

The way the user information is provided can easily be changed and these
scripts can be adjusted to perform other tasks such as managing groups and
Single Login/6000 users.

As a matter of fact, our tools go far beyond the scope of just adding, modifying,
and deleting users. By providing and even managing ACL information for each
user they actually build a complementary ACL management environment. DCE
provided ACL managers can list all users and groups with their access rights to
a specific object, but there is no way to answer the question: to which objects
does a specific user have any rights?

The following sections describe the idea and tools for mass user management.

—— Please Note

Our tools as well the underlying architecture should be seen as a working
framework for DCE administrators who want to manage large DCE
environments in a more effective way. Their usage can be very simple when
you rely on the defaults you can set, or it can be used as a sophisticated
user and ACL management tool. See 4.5, “Administering Users and Groups”
on page 161 for tips on how to use the tools in specific tasks.

They probably need more work or adjustments before they can be applied in
specific customer scenarios.

5.5.1 User ldentifications, Groups, and Access Rights

Each cell in DCE has a cell administrator which has comprehensive privileges in
DCE just like root in UNIX. The cell administrator is responsible for user/group
management as well as for all other security related tasks such as password
composition policy, expiration policy, ticket lifetime and so on. Each cell has a
security database, called the registry database. It is located under the directory
/var/dcel/security/rgy_data.

Users are accessing objects. In order to do so they need access rights because
objects are protected and carry Access Control Lists. ACLs specify which user
has which kind of rights. In order to facilitate administration of access rights,
users with equal access rights or job profiles can be lumped into groups.
Groups as well as the information on which users belong to which groups are
stored and managed in the registry database as well.

Each object in DCE is represented through the universal unique identification
(UUID) which is a 128-bit string. In DCE users are solely identified by their UUID.
Access rights and ownership to objects are expressed by UUIDs. DCE
commands internally use UUIDs but for display they look the name up in the
registry database and the user name is displayed. If a user is deleted from the
registry, DCE objects show an orphaned UUID string instead of the name, if that
user still has any rights on these objects.

Also stored with each user and group are their UNIX or their operating system
user (UID) and group (GID) identifiers. UNIX commands consider the UID/GID to
determine who the user is and what rights he has. UNIX commands internally
use the UID but for display they enter the /etc/passwd file with that UID to

Chapter 5. New Tools and Technologies 243

determine the user name. They do not look the name up in the DCE registry
database. This is what sometimes causes so much confusion in the current DCE
implementation which is not integrated into AIX. If UUID and UID do not match,
for instance DFS files do not seem to belong to the correct owner when looked at
with UNIX commands.

—— Please Note

The absolutely most important prerequisite in user/group management is that
for each user and group the UID/GID in the registry match the UID/GID
defined for them on any possible UNIX system in the cell.

A package such as Single Login/6000 can ease that burden (see 5.4, “Single
Login/6000” on page 235).

0S/2 and Windows workstations do not suffer from the same problem,
because they are not multi-user systems and hence do not have UIDs.

5.5.2 Management Tool Structure and Overview

244

DCE provides a central point of administration through the use of different tools
such as:

rgy_edit to centrally administer the registry database
acl _edit to administer the ACLs

These tools are line commands and quite primitive. They are the standard tools
supported by all the vendors. However, AIX provides a better interface through
the use of SMIT. The next OSF DCE release (1.1) will provide a DCE shell which
will incorporate all the different standard tools. We have built a number of
commands using the standard DCE commands to manage accounts.

Using and Administering DCE

-
DCE
. get_all_info
Registry dce_users
]
| '

get_info_users uuid=789a6745b-8..

Central Repository:

usrl usr2 usr3 usrm

uid=120

#list of nsers
usrl
usr2
usm

User Definition Files (UDF)

add_users

del_users

, Tusks performed:

O Update registry database
O Update the central repository

rgy_enable users O Update user’s state
dfs_enable_users O Add/enable/suspend/delete users
acl_enable_users O Enable and set ACLs for the user
susp users { O Collect User and ACL information

O Update the cemetery repository and
remove the ACLs if the user has been
deleted

O Check the integrity of the central
repository against the registry database

\ and ACL information in DCE

Figure 37. User Management Workflow. The commands work on a list of users and
perform certain tasks for each of these users.

As you can see from Figure 37 the commands are:

get_all _info

get_info_users

add_users

Extracts principal, account, and ACL information for all users
defined in the DCE registry. Creates a UDF for each user in a
separate repository directory. This is useful also for integrity
checks with the central repository. If the central repository is
specified, all existing UDFs are updated and new ones are
created for users who did not have one.

Group files (GDFs) are created in the same run.

Gets information on certain users only and updates the
central repository with current information as defined in the
registry and in the ACLs of all objects.

DONE records which reflect recent changes to ACL definitions
are deleted, because the currently valid ACLs are extracted
from DCE.

Adds accounts to the registry database and to the central
repository.

This will create principals and basic accounts which are not
enabled for login yet. All account attributes are set to their
default value, except for the UIDs, which can be predefined in
a file in the central repository.

If not there yet, a file is created for each user in the central
repository.

Chapter 5. New Tools and Technologies 245

246

rgy_enable users Enables accounts for DCE, applying all DCE registry
information found in the user definition files such as the home
directories, group memberships and so on. The users' state
is set to RGY_ENABLED.

dfs_enable users This step basically sets all the ACLs for the users’ initial
containers, their home-directories. It also sets the initial
container creation and initial object creation ACLs.

If nothing is specified in a file when this command is used, no
ACLs are set. However, the accessibility of the user's home
directory is checked and then the state is updated to
DFS_ENABLED, assuming the ACLs had already been set
upon the creation of the directory.

acl_enable users This step basically sets all the ACLs in CDS and DFS objects
for which the users have a user type ACL entry. The state is
updated to FULL_ENABLED.

susp_users Suspends the accounts for the users and updates their state
information. The users can now be moved to another cell, or
they can be deleted or reenabled.

del_users Removes the users from DCE. Entries in the DCE registry
database and ACLs are removed. The initial containers are
not touched, they should be removed with regular AIX or DFS
commands.

All of the above commands accept single user names, a file with a list of users,
or read user information files from the central repository which contain a certain
state. Users can have names such as: usr2, rolf, hans and so on. But they can
also take on the form paris/brice, munich/sal and so on supporting the concept
of branches as provided by Single Login/6000. These types of names will be
stored in the central repository with file names paris%brice and munich%sal.

The approach we used is simple and is not intended to solve all your user
management problems, but it can represent a good foundation for further
development. What we have used for principal and account can be adapted for
group and organization as well.

5.5.2.1 Central Repository
The reason for writing new tools was the lack of tools to add and modify many
users at once. This might become necessary for migration processes such as:

Migrating from AIX to DCE
Migrating from NIS to DCE
Splitting a DCE cell
Joining DCE cells

Another requirement was to manage, at the same time, not only the registry
information but also state, ACL, and file system information for users. So the
central repository looks like:

Using and Administering DCE

Central Repository:

dee_users

[| | [|
User Definition File (UDF): usrl usr2 ust3 ustd usrn....

uuid=—000001ba—8¢07-2e03-a..5
uid=120

groups=none itsc

group=itsc

= ©
homedir=/: /df's_home/usrl

size=90

initprog=/bin/ksh

expir_date=95/1/1
good_since=94/9/30

ACL_INI=dfs#/./.. #user_obj:rwx..
ACL=dfsi#/./.. #user:usr l:re—
state=FULL, ENABLED

DEL_ACI=....

@ All Account Information, including:
group membership, expiration time

|:| Registry Information
All "users:usrl:..” ACLs for CDS and DFS.
All ACLs for DFS home directory

Log information. They should match
with the information in the log_user

ACL Information @

State & Log Information @

E . . . This section may be edited. Contains
% 5ifi y
////% M cation Information @ entries to add or delete from DCE

Figure 38. The Central Repository. The central repository (dce_users directory) contains
all the registry account and ACL information for a user.

Organized in this way the central repository contains ACL information related to
a specific account or user. This is information which cannot easily be accessed
otherwise. With the standard acl_edit command you can only access ACLs per
object. However, not all ACL information is covered within the central
repository.

One of the main objectives of the ACL entries in the repository was to enable an
administrator to clean up all the ACL entries when a user is deleted and to
support recreation of the same information in another (or the same) cell.

Which objects are relevant for that purpose?

The answer is: ACLs for objects owned by that user and ACLs for other objects
in which that user has a specific entry in the form user:usrl:rw----. To find the
latter type of entries, all objects have to be searched. Objects owned by that
user are too numerous to capture all ACL information. It could be done, though,
but in order to limit these type of object entries in the user definition file, we
decided to just manage the DFS home directories.

Our goal was to maximize the coverage of standard situations with a reasonable
effort. This led us to the following assumptions:

1. Users do not own CDS objects, but they can have ACL entries in CDS objects
in the form user:sal:rw----. This means no ACL_INI entries supported for CDS
object in the UDFs.

2. Users only own DFS objects (files and directories) underneath one single
directory (usually their home directory). This means we do not look for other
objects owned by the users, we just look up their home directories.

Chapter 5. New Tools and Technologies 247

248

3. Files and directories underneath a home directory all belong to the same
user and they do not change any ACLs themselves. This means we can rely
on the initial creation ACLs for all new files and directories underneath the
home directory.

4. A user can have specific entries in other DFS objects in the form
user:sal:r-x---.

In a well organized production environment you are very likely to find these
conditions, and our tools might possibly be used as they are. Exceptions from
these assumptions require special treatment. Depending on how close you are
to the ideal environment you will have to:

Treat other objects which do not fit into the above mentioned scheme
manually, for instance run a find command to find all files belonging to a
certain user and do whatever you need to do with these files (delete, backup,
and so on)

Edit our user definition files manually or with stream editing commands (sed)

Extend our scripts to do more sophisticated things

ACL management on a per user basis is actually a big weakness in todays DCE.
Maintenance of a global ACL repository should be built into the acl_edit
command, such that integrity is always guaranteed. In order to extract ACL
information from the CDS and DFS objects into our central repository, we have to
scan through all objects. This will most likely only be done before major
reconfigurations or deletion of users. However, modifications to ACL entries for
users could always be made in our repository and applied with acl_enable users
instead of using acl_edit. In this way the central repository would always be
up-to-date in this regard without the need to extract the information over and
over again.

The central repository can be located anywhere in the file system for instance on
the security server or any other central system. It can even be located in DFS.

It is a directory named dce_users and contains a file for each user. Each file
represents a user profile. The next section gives details about the attributes in
that file.

5.5.2.2 User Definition File (UDF)
The UDF of usr2 could look like this:

-- 1HLLrrrnrnirrr po NOT change manually the first part 11111
--- Principal info:
uuid=000001h5-76ec-2e02-ad00-10005a4f4165
uid=437

groups=fsc, staff, security

--- Account info:

group=itso

org=ibm

homedir=/:/dfs_home/usr2

size=487408

initprog=/bin/ksh

expir_date=1995/06/17

good_since=1994/06/17

--- ACL_INI 1info:
ACL_INI=dfs#/:/dfs_home/usr2#mask_obj:r-x---
ACL_INI=dfs#/:/dfs_home/usr2#user obj:rwxcid
ACL_INI=dfs#/:/dfs_home/usr2#group_obj:rwx---
ACL_INI=dfs#/:/dfs_home/usr2#other obj:r-x---

Using and Administering DCE

ACL_INI 0C=dfs#/:/dfs_home/usr2#mask obj:r-x---

ACL_INI 0C=dfs#/:/dfs_home/usr2#user obj:rwxcid

ACL_INI 0C=dfs#/:/dfs_home/usr2#group_obj:rwx---

ACL_INI 0C=dfs#/:/dfs_home/usr2#other obj:r-x---

ACL_INI CC=dfs#/:/dfs_home/usr2#mask obj:r-x---

ACL_INI CC=dfs#/:/dfs_home/usr2#user obj:rwxcid

ACL_INI CC=dfs#/:/dfs_home/usr2#group_obj:rwx---

ACL_INI CC=dfs#/:/dfs_home/usr2#other obj:r-x---

--- ACL info:

ACL=cds#/.:/sec#user:usr2:r----
ACL=cds#/.:/subsys/dce/dfs#user:usr2:r----
ACL=cds#/.:/sec#user:usr2:r----
ACL=dfs#/:/dev/dce#user:usr2:rw----
ACL=dfs#/:/dev/aix#user:usr2:r-----

--- ACL history (will be consolidated by next "get info_users")
DONE=ADD_ACL#cds#/.:/hosts#user:usr2:rw

--- State and Tast access:

state=FULL_ENABLED

Tast_time_access=Mon Jun 20 10:55:03 CDT 1994 op=acl_enable_users
#11

#!! Edit below (values that could not be applied):
ADD_groups=g8

#!! Edit below (values to be applied next time):
DEL_groups=fsc

DEL_ACL=cds#/.:/sec#user:usr2

The following parameters are filled in and updated only by the user management
procedures and should never be edited manually, otherwise you are most likely

to introduce inconsistencies. For the administrator these values are for

information only. You can run the powerful UNIX commands such as sed, grep,

awk, cut and so on against these files and attributes to get useful information

about your cell. The user management tools need this information to determine
the current state and definitions for a user to be able to correctly apply changes.

uuid Universal unique identifier

uid UNIX user identifier

groups All groups of which the user is member

group Primary group

org Organization

valid Indicates whether the user may login or not; should correspond

to the state

gecos UNIX GECOS field for user description

homedir Home directory of the user

size Size of the user’'s home directory

initprog User's favorite shell

expir_date Account expiration date

good_since Account good since date

ACL_INI ACLs for the initial container, normally /:/dfs_home/user
ACL_INI OC Initial Object Creation ACLs for the initial container
ACL_INI_CC Initial Container Creation ACLs for the initial container

Chapter 5. New Tools and Technologies

249

ACL=cds# ACLs for the user on a CDS directory or object
ACL=dfs# ACLs for the user on a DFS directory or file

DONE=ACL#dfs# Reflect changes to ACLs as executed by ADD_ACL or DEL_ACL
instructions; they are consolidated and deleted with the next
get_info_users command

state Account state information

last _time_access Logs time and operation of the last access to this user
definition file

The next section of the file contains values which should have been applied in
the last enabling process, but failed for some reason.

ADD groups=g8 The user should have been added as a member to group g8, but
the group did not exist. The entry is left there for a later update
or for manual deletion.

The last section of the file is where an administrator is allowed to specify
modifications. He can add or delete values. In order to do so, he should
suspend the users. Upon next reenabling steps all the values defined here are
applied. When this is successful, the value is deleted from the modification
section and the according value in the top section are updated to reflect the
correct situation. If one value fails to be applied, it is moved to the section
values that could not be applied. The following are valid modification values:

ADD uid This is to predefine the UID; this is only applied with the
add_users command

ADD_groups A list of groups, to which the user is to be added as a member

DEL_groups A list of groups, from which the user is to be removed as a
member

ADD_newgrp (Re)define the primary group

ADD_neworg (Re)define the organization

ADD_gecos Add or change the GECOS field

ADD_homedir (Re)define the home directory

ADD_initporg (Re)define the shell or initial program

ADD_ACL_INI Define a new ACL entry for the home directory (or for which the
user is the owner)

ADD_ACL_INI CC Define a new initial container creation ACL entry for the home
diretory (or for which the user is the owner)

ADD_ACL_INI OC Define a new initial object creation ACL entry for the home
diretory (or for which the user is the owner)

ADD_ACL Define a new CDS or DFS ACL entry for the user

DEL_ACL* All of the ADD_ACL-entries have a counterpart which allows to
remove an ACL entry from an object

The expiration date and the good-since date can be defined as part of the
environment and will be applied in the same way for all users. See 5.5.2.4,
“General Structure and Customization” on page 252 for global configuration
options.

250 Using and Administering DCE

5.5.2.3 Account State Information
The state in the central repository can provide cell administrators with
information such as:

How many users are enabled
How many users are suspended
Which users have been deleted

The state information is used by the different scripts and commands during the
decision process about which files need to be touched. To answer the above
guestions, an administrator can run UNIX commands such as grep, sed, awk and

so on against the UDFs.
ouT
NIs
DCE E> DELETED 2> cemetery
del uaers
NetWare Hle:ul Fleml
S'\.IEP users E'LIEP users

add uaers
sugp users
DFS_
ENABLED
FULL_
dfs enable_users ENABLED
acl enable uaers

rgy_ enable users

Registry —
Central Repository: dee_users
get_info_users
get_all info — File:usr 01 File: use 02 File: usr_n
ACL | | RGY Info]
Info = e =]

Figure 39. DCE User State Diagram. Each user defined with these set of tools is always
in a certain state. The defined commands are used for state transition.

The following states are used:

NEW Users can be added without a UDF. Then they get default values
for their UID. If a UID needs to be predefined, a UDF has to be
created and the state has to be set to NEW. The command
CR_EMPTY_UDF creates an empty UDF. UDFs can also be created
for instance from an /etc/passwd file.

SUSPENDED The account for the user is defined but not enabled for login.
Files in this state can be edited. Changes will be applied by a
subsequent rgy_enable_users command.

RGY_ENABLED The account for the user is enabled in the DCE registry and
working in DCE. No ACL information is applied yet.

DFS_ENABLED The account for the user is enabled in the DCE registry and their
home directory is in DFS and has the correct ACLs set.

Chapter 5. New Tools and Technologies 251

FULL_ENABLED The account for the user is enabled in the DCE registry and all
defined ACLs are generated.

DELETED The user has been removed from DCE and the central repository
and moved into the cemetery repository.

An account cannot be deleted from DCE, if it is not in a SUSPENDED state. So,
before deleting an account the cell administrator needs to suspend it. The
suspension state disables the user and prevents them from logging into DCE, but
it keeps all information about group membership, ACLs. However, it does not
force a user out of DCE. As long as their ticket from a previous login is valid,
they can work. The suspension state is a transition state. Together with NEW it
is the only state in which the UDFs should be edited.

If users need to be modified, they have to be put into the SUSPENDED state first.
This is the way it is implemented now to keep everything in an order. This
means, for instance, to change an ACL requires the sequence susp_users,
rgy_enable users, dfs_enable users, and finally acl_enable users. This is not a big
penalty, because none of the steps does unnecessary processing but basically
just changes the state.

5.5.2.4 General Structure and Customization
Our user management tools are contained in the tar-file umgt.tar. They expand
in the current directory, whatever directory you choose.

1. Primary commands as described in this publication:

./umgt

./get_all_info
./get_info_users -> umgt
./add_users -> umgt
./rgy_enable_users -> umgt
./dfs_enable users -> umgt
./acl_enable_users -> umgt
./susp_users -> umgt
./del_users -> umgt

2. Internal commands used by the primary commands:

./ADD_USER
./DEL_USER
./SUSP_USER
./RGY_ENABLE_USER
./DFS_ENABLE_USER
./ACL_ENABLE_USER
./GET_PRINCIPAL
./GET_ACCOUNT
./GET_ACL
./GET_ACL_INI

3. Internal commands which are partly configurable

. /ENVIRONMENT
./READ_UDF
./WRITE_UDF
./10G

4. Directories (repositories)

./cemetary users
./dce_users
./dce_groups
./tmp

252 Using and Administering DCE

In order to run the commands you must be in this directory. All commands
including the internal commands can be called with an -h flag, which displays
what the purpose of each command is. All scripts are extensively commented.

The primary commands such as add_users, rgy_enable_users and so on are all
linked to the same script umgt, because they basically all perform the same
task. They prepare a candidate list of users with the correct state and call the
right internal command.

The commands in capital letters are those which are called internally by the
primary commands. They all accept an unlimited number of user names as
arguments and could as well be called manually. However, if you call them
manually, there is no state checking performed and the user definition is applied
in the registry as they appear in the file.

The ENVIRONMENT File: All of the scripts read their environment variables
from the script ENVIRONMENT. This allows you to configure certain things at one
place for all commands:

USER_PWD Initial password supplied for each new account.

CENTRAL_REPOS The default directory name for the repository is dce_users in the
directory where all commands are located. This can be changed
to any other directory and path name.

DFS_STARTDIR In well structured file systems the files to which users have
specific ACL entries are probably concentrated into only a
subtree of the entire file system. By setting this variable an
administrator can limit the scanning process for ACL entries to
a subtree.

DEF_EXPIR DATE Specifies an expiration date for login accounts. It is currently
calculated to be one year from the current date. This will be
applied to every account, whenever rgy _enable is called.

DEF_GOOD_SINCE Is set to the current date.
LOGFILE Name of the log file.
The READ_UDF File: This is the place to define all default values for new

accounts. This script reads the UDF and is called from all the internal
commands. The first section of this file can be edited:

B e e m
Assign the default values ($1 is basically the user name):

B e
111111 DO NOT use a ":" in GECOS. Otherwise parsing will be corrupted

gecos="Account for $1”
homedir=/:/dfs_home/$1
initprog=/bin/ksh
expir_date=$DEF_EXPIR_DATE
good_since=$DEF_GOOD SINCE

The rest of the script first resets all values, then reads the values from the UDF,
and finally assign the values to variables used in the other scripts. If new
parameters will be introduced, an entry has to be made in the big case
statement. Otherwise the parameter will be overlooked.

Chapter 5. New Tools and Technologies 253

The WRITE_UDEF File: This script is called from all other routines to write the
UDF. By changing this script, the outlook of the UDF can be changed.

5.5.2.5 Migration from Other Environments

To create a tool which translates specific user definition information such as an
/etc/passwd file into UDF format you can use the READ_UDF and WRITE_UDF
scripts.

In READ_UDF you will see what variables can be set. A conversion tool has to
perform the following steps for each user:

1. Call . READ_UDF, which assigns the default values to the new user file
2. Call . WRITE_UDF to write the upper part of the file with the default values

3. Interpret the values in the old environment and create ADD instructions
which you append to the UDF

The pwd2dce procedure is provided on the diskette that comes with this
publication. It is essentially the same procedure as nis2dce_users as listed in
4.7.2.3, “The nis2dce_users Procedure” on page 207.

When UDFs are created from an old environment, they should be carefully
inspected before the users are added to DCE.

5.5.2.6 Integrity of the UDF
There two ways of maintaining integrity in the user definition files:

1. You do not care what might be inconsistent between the UDF and what is
defined out there in the cell, that is to say the registry and the ACL lists of
CDS and DFS objects.

Then you just run get _info users. This command gathers all information for
the specified users and overwrites the UDF. So, this basically just refreshes
the UDF.

2. You want to know where there are inconsistencies.

Then you run get _all _info which extracts information for all users into a
separate directory. You then can compare the UDFs in central repository
with the files in the new directory with regular UNIX commands such as diff.

5.5.3 Group Management

254

Since it was so easy to adapt the user management concepts to group
management, it was done for your convenience in a last minute effort. We
decided anyone who intends to use the user management tools will also want to
treat groups in the same way. So, we added this extension, but were not able to
document it in the same detail. The concept for the group management is
basically the same as for users and the commands work in the same way.

Note: The members of groups are managed through UDFs rather than through
GDFs. When a group is created is has no members. Users are then added to or
deleted from groups with ADD_groups or DEL_groups entries. This is a more
natural way for defining group memberships. When you add a new user, you
want to specify a list of groups they are supposed to belong to, as opposed to
updating every group with a new member. GDFs show their members for
information only. To make this happen you must run the get_info_groups or the

Using and Administering DCE

get_all_info commands. Groups cannot be deleted as long as they contain
members.

5.5.3.1 Group State Overview
Please refer to 5.5.2.3, “Account State Information” on page 251 for the general
idea of the states and the commands that are possible in each state.

e N ouT

DCE : DELETED > cemetery
del groups

NetWare / - File:gl File:g2

add_groups | |

CR_EMPTY GDF

update groups

Registry ——

Central Repository: dee_groups
get_info_groups

— Fle: grp 01 File: grp_02 File: grp_n

get_all_info
ACL | | || RGYInfo |

Info

ACLInfo [

Figure 40. DCE Group State Diagram

The following states are used:

NEW Groups can be added without a GDF. They receive default
values for their GID. If a GID needs to be predefined, a GDF has
to be created and the state has to be set to NEW. The command
CR_EMPTY_GDF creates an empty UDF. GDFs can also be created,
for instance, from an /etc/group file.

ADDED The group is defined in the registry. Files in this state can be
edited. Changes will be applied by a subsequent update_groups
command.

DELETED The group has been removed from DCE and the central

repository and moved into the cemetery repository.

A group cannot be deleted from DCE, if it still has members or if previous
ADD_ACL or DEL_ACL entries have been executed, but the GDF is not
consolidated yet, which means it still contains DONE entries.

5.5.3.2 Group Commands Overview
Please refer to 5.5.2, “Management Tool Structure and Overview” on page 244
for an overview on how the user management tool is structured.

The commands needed for group management are:

get _all_info Is the same as described for user management. It extracts all
user and group related information from the DCE registry and
writes the UDFs and GDFs.

Chapter 5. New Tools and Technologies 255

256

get_info_users Gets information on certain groups only and updates the
central repository with current information as defined in the
registry and in the ACLs of all objects.

add_groups Adds groups to the registry database and to the central
repository. If the GDF already exists, the group is created
with the specified GID.

If it is not there yet, a file is created for each group in the
central repository and the GID is automatically assigned.

update_groups This step basically sets all the ACLs in CDS and DFS objects
for which the groups have a group type ACL entry. The state
remains ADDED.

del_groups Removes the groups from DCE. Entries in the DCE registry
database and ACLs are removed. If the group still has
members, the group is not deleted. You must first delete that
particular group membership from each user. This prevents
any accounts from being deleted together with the group, if
this was their primary group. If ACLs cannot be removed or if
there are still any DONE entries in the file, the group is not
deleted either. This ensures that no orphaned UUIDs are left
in object ACLs.

All of the above commands work with the same logic as the ones for user
management. The group repository is dce_groups.

5.5.3.3 Central Group Repository

The central repository for groups is the directory dce_groups. It works the same
way as the user repository, which is described in 5.5.2.1, “Central Repository” on
page 246.

5.5.3.4 Group Definition File
The GDF of g7 could look like this:

-- 1HLLLEEnrrirrt po NOT change manually the first part 11111
--- Group info:

uuid=00000070-77c4-2e88-8801-02608c2fff91

gid=112

--- Memberships (information only; managed via principals):
users=cell_admin

--- ACL info:

ACL=cds#/.:/hosts#group:g7:-w-t-

--- State and Tast access:

state=ADDED

Tast time_access=Wed Sep 28 11:44:02 CDT 1994 op=GET ACL

#11

#11 Edit below (values that could not be applied):
DEL_ACL=cds#/.:/hosts#group:g7
#11 Edit below (values to be applied next time):

The following parameters are filled in and updated only by the user management
procedures and should never be edited manually, otherwise you are most likely
to introduce inconsistencies:

uuid Universal unique identifier for the group

gid UNIX group identifier

Using and Administering DCE

users List of group members (for information only)

ACL=cds# ACL entry for the group in a CDS directory or object
ACL=dfs# ACLs for the user on a DFS directory or file
state Group state information

last_time_access Logs time and operation of the last access to this group
definition file

The next section of the file contains values which should have been applied in
the last process, but failed for some reason. Or they did not have to be
executed, because a get_info_groups command was run.

DEL_ACL=g8 An ACL entry for a CDS object should have been updated or
created. The entry is left there for a later update or for manual
deletion.

The last section of the file is where an administrator is allowed to specify
modifications. They can add or delete values. If one value fails to be applied, it
is moved to the section values that could not be applied. The following are
valid modification values:

ADD gid Predefines the GID; this is useful with the add_groups command
only

ADD_ACL Defines a new CDS or DFS ACL entry for the group

DEL_ACL Deletes a CDS or DFS ACL entry for the group

5.5.3.5 General Structure and Customization

Our group management tools are contained in the tar-file umgt.tar. Together
with the user management commands they expand in the current directory,
whatever directory you choose.

1. Primary commands as described in this publication:

./gmgt

./get_all_info
./get_info_groups -> gmgt
./add_groups -> gmgt
./update_groups -> gmgt
./del_groups -> gmgt

2. Internal commands used by the primary commands:

./ADD_GROUP
./DEL_GROUP
./ACL_ENABLE_GROUP
./GET_GROUP
./GET_ACL

3. Internal commands which are partly configurable:

. /ENVIRONMENT
./READ_GDF
./WRITE_GDF
./10G

4. Directories (repositories):

./cemetary groups
./dce_groups
./tmp

Chapter 5. New Tools and Technologies 257

In order to run the commands you must be in this directory. All commands
including the internal commands can be called with an -h flag, which displays
what the purpose of each command is. All scripts are extensively commented.

5.5.3.6 Migration from Other Environments

To create a tool which translates specific group definition information, such as
an /etc/group file into GDF format, you can use the READ_GDF and WRITE_GDF
scripts.

In READ_GDF you will see what variables can be set. A conversion tool has to
perform the following steps for each group:

1. Call . READ_GDF, which assigns the default values to the new group file

2. Call . WRITE_GDF to write the upper part of the file with the default values

3. Interpret the values in the old environment and create ADD instructions
which you append to the GDF

The grp2dce procedure is provided on the diskette that comes with this

publication.

When GDFs are created from an old environment, they should be carefully
inspected before the groups are added to DCE.

5.5.4 Adding Users: add_users

258

The add_users procedure is a simple shell script which adds principals and
accounts to DCE. After execution of this step the accounts are not enabled for
login yet, their state is SUSPENDED. If there is no user definition file for a user
in the central repository, this step creates one.

There are special scripts to create user definition files from the following user
definition environments:

Network Information System
AIX
DCE

Using and Administering DCE

central repository

List of users to ADD
—

|

usrl usr?

usr2 wid=121

usmm state=NEW
usr2 e

add users { <filename> | <username>| all }

Creates a list of users who have
either state NEW or are not de-
fined in the repository yet.

ADD_USER $repos Sulist

$ulist
(variable) Zign?l:;ﬁdgiz e Update the log file:
log_user
dce _users
]
| 1 i i I
usrl usr? a3 - e
- unid=7890-9876-09..

uid=121
state=SUSPENDED
group=none
org=mone == | Lb—— T

Figure 41. The add_users Procedure. After checking that the state of all candidates are
NEW, the script ADD_USER is called, which creates entries in the DCE registry and in the
central repository.

5.5.4.1 Syntax

The command takes one of the following forms:
add_users <username>
add_users <filename>

add_users all
add_users -h

5.5.4.2 Arguments

username Single user name to be added, such as joe or austin%joe
filename File containing only user names

all Keyword which indicates that the central repository should be
searched for all users in the state NEW

-h Displays more information on the purpose of the program

5.5.4.3 Description

The command requires exactly one argument. If it is not all it checks whether it
is a file name. If not, it assumes it is a user name. If the argument is a file, that
file may only contain user names or comment lines which begin with #.

The first step is to evaluate a candidate list of potential users to be added. New
users may either be added without being defined in the central repository at all
or from user definition files which need to have their state set to NEW. If the
argument is a file or a single user, these prerequisites are checked before a

Chapter 5. New Tools and Technologies 259

260

user is added to the candidate list. If the argument was all, then all users in the
central repository with state NEW yield the candidate list. The candidate list is
simply an environment variable $ulist that contains all the approved user names.

The user definition files can be prepared by running CR_EMPTY_UDF new_file repos
and filling in the correct values with an editor or they can be generated from
other sources such as an /etc/passwd file. Consult 5.5.2.1, “Central Repository”
on page 246 for information about which parameters may be set.

Internally the add_users procedure then calls ADD_USER $repos $user_list. The
administrator is told how many users are going to be added and is prompted for
the password:

You are going to add "nn" users
Starting to work with rgy edit ...

Please provide your password:

If user definition files are used and UIDs are specified, these UIDs are checked
whether they are already in use. If this happens or if the user is already defined,
an error message is displayed and entered into the log file.

The account is then created, but not enabled for login in DCE. If defined, only
the UID is applied. Group and organization are set to none. In order to enable
the user for login and to apply the rest of the attributes, you must run the
rgy_enable_users procedure. A file for each new user is then created in the
central repository, or it is updated, if it had been previously defined.

At the end of the of the adding operation an additional message might be given
to the administrator telling him which users have failed to be added and
indicating the reason for the failure:

The following users/accounts could were not good for "add"”,
please check again

paris/brice excluded from list. Reason: state not NEW
ADD USER daemon failed. Reason: Principal already exists
ADD_USER guest failed. Reason: UID already exists

you can find them in the file: .../tmp/no_good users

The result of the operation is logged in the file log_user. For each user there
will be an entry telling whether he was successfully added or not. For all
unsuccessful entries the reason for the failure is indicated:

account:a2 date:Tue Jun 21 11:27:31 CDT 1994 op=add users from host:ev4d \
aix_user:root result=SUCCESS

account:adm date:Tue Jun 21 11:27:32 CDT 1994 op=add users from host:ev4 \
aix_use r:root result=FAILURE why=uid already exist

account:usr2 date:Wed Jun 22 18:19:02 CDT 1994 op=enable users from host:ev4 \
from user:root op_result=FAILURE why=user not in NEW state

After successful creation of a user his new state and the attribute
last_time_access is entered to that user’s file in the central repository:

state=SUSPENDED
last_time_access=Tue Jun 21 11:28:44 CDT 1994 op=add_users

Using and Administering DCE

The file is now ready for the rgy_enable_users command. If other than the default
values need to be specified, they should now be filled in the UDF.

5.5.4.4 Implementation Specifics
The add_users script is a link to the umgt script, because the checks to be
performed are the same for user management scripts.

The kernel of the ADD_USER command, which is internally called, are the following
few rgy edit commands:

cat << EOF | rgy_edit
domain principal

add name_principal uid
quit

EOF

cat << EOF | rgy_edit

domain account

add name_principal -g none -o none -anv -pw "$USER PWD" -mp "$PASSWD" -pnv
quit

EOF

The option account not valid (-anv) is provided, so the user is added as account,
but cannot log in to DCE, because they are in the SUSPENDED state.

5.5.4.5 How to Specify UIDs

The only way predefine specific UIDs for the add_user function is to predefine a
user definition file in the central repository and set its state to NEW. You can
predefine any of the supported attributes in the user definition files (see also
5.5.2.1, “Central Repository” on page 246:

ADD_uid=120
ADD_newgrp=dev
ADD_homedir=/:/dfs_home/usr2
ADD _initprog=/bin/csh
state=NEW

The add_users command only honors the UID to create the account, because this
is the only value of a user which cannot be changed later on. The rest of the
attributes are used only by the different enable _users commands.

This might be important when you move users from NFS or AIX into DCE and
want to keep their UID assignment.

Another way to control UID assignment to a certain extent is to set the registry
property Towest UID for principal creation to a value of your choice, for
example to 2400:

rgy edit
Current site is: registry server at /.../itsc.austin.ibm.com/subsys....
rgy_edit> properties

Lower bound unix id for automatic UID assignment: (100) 2400

Chapter 5. New Tools and Technologies 261

262

rgy edit> quit
#

By running this procedure each time before executing the add_users command,
you can at least control the range of each portion of users you want to add. This
lowest UID can be set anytime and does affect already existing accounts.

5.5.4.6 Error Checks and Messages

The add_users command does the following checks:

If no argument is given, the add users command displays the following
message:

Usage: add users <username>
add_users <filename>
add_users all
add_users -h

<filename> File with a Tist of user names

<username> = String like joe or austin%joe
all = Extracts info for all users in the according state
-h = Display more information

If the current user is not cell administrator, the following message is
displayed:

Checking to be sure you are cell_admin
You must login as cell_admin first ... sorry

If a list of users is given as a file, it first checks if the file is not an empty list.
If it is, the following error message is displayed:

A file must contain something !!!

If the single user or some of the specified users of <filename> already
have a user definition state, but it is not NEW, the following message
appears

Creating a candidate Tist of users to add:
Checking user97 ...not ok (state not NEW)

If users or UIDs of the candidate list already exist in the DCE registry, the
following message appears on the screen:

Checking user95 ...failed (Principal already exists)
Checking user98 ...failed (UID already exists)

If the candidate list is empty because the specified users have a user
definition file, but none of them is in the state NEW, the following message is
displayed:

A11 users have files in the central repository,

but their state is not NEW.

5.5.4.7 Initial Password

The initial password for each user will be set with an environment variable which
can be set by editing the file ENVIRONMENT. All users will get the same initial
password.

The uglier the password the more likely a user will actually change it upon first
login. Unfortunately even if the option password not valid is given in the add

Using and Administering DCE

command line (-pnv flag), DCE won't force the user to change the password the
first time they log in. DCE the will simply display the message:

Password must be changed!

It will be good practice for the cell administrator to check with a simple script if
the user has changed the password or still keeps the initial one. The password
composition and management in DCE is minimal and does not comply with the
Green Book from the Department of Defense (DoD) nor with the Minimum
Security Requirements for Multi-User Operating Systems from the National
Institute of Standard and Technology (NIST). As matter of fact DCE warns you, if
you give a wrong user or a wrong password:

dce_login user_does not exist

Sorry.

User Identification Failure. - Registry object not found (dce / sec)
dce_login cell_admin

Enter Password:

Sorry.

Password Validation Failure. - Invalid password (dce / sec)

providing hackers with valuable information to guess users and password in DCE
and worst the hacker can try many times because the number of attempts is
unlimited "M

Single Login/6000 does not have these problems. It actually forces the users to
change their password. It is possible to enforce a password policy and
password rules with this program offering. It also keeps track of failed logins
and excludes the user from further login after a configurable number of failed
attempts.

5.5.5 Enabling Users for DCE Login: rgy_enable_users

The rgy enable users procedure enables users to log in to DCE. It applies all the
attributes defined for each user in their user definition file and enables the
account. The procedure basically works in the same way as add_users shown in
Figure 41 on page 259. The difference is that the state must be SUSPENDED
and that RGY_ENABLE USER $repos $ulist is called.

5.5.5.1 Syntax
The command takes one of the following forms:

rgy_enable_users <username>
rgy_enable users <filename>
rgy_enable_users all
rgy_enable_users -h

5.5.5.2 Arguments
username Single user name to be added, such as joe or austin%joe

filename File containing only user names

all Keyword which indicates that the central repository should be
searched for all users in state SUSPENDED.

-h Displays more information on the purpose of the program

Chapter 5. New Tools and Technologies 263

264

5.5.5.3 Description

The command requires exactly one argument. If it is not all, it checks whether
it is a file name. If not, it assumes it is a user name. If the argument is a file,
that file may only contain user names or comment lines which begin with #.

The first step is to evaluate a candidate list of potential users to be enabled.
Each user name derived from the input arguments is checked whether it has a
user definition file and whether their state is SUSPENDED. If these conditions
are not met, an error message is created.

This command is also used for updates for already enabled users. The users
who need to be updated have to be suspended. Then the user definition files
may be edited.

The next step is to call RGY_ENABLE_USER $repos $ulist, where ulist is the list of
candidates to be enabled. This procedure gets all registry relevant attributes
from the user definition file or assigns a default value, if a certain attribute is not
defined. The default values can be specified in the ENVIRONMENT and the
READ_UDF procedures as described in 5.5.2.4, “General Structure and
Customization” on page 252. Then the DCE command rgy _edit is called to try to
update the account in the registry.

That command might fail for some or all of the users. If this happens, an error
message is displayed. Reasons can be:

User does not exist yet
Primary group does not exist yet
Primary organization does not exist yet

Other minor errors may be discovered, for instance one of the other groups the
user is supposed to be a member of does not exist. In such cases a warning is
issued but the account is enabled anyway. At last the user definition file is
updated, if necessary. In this case the entry of the UDF is left in the file so that it
can be applied later on or deleted by the administrator.

5.5.5.4 Implementation Specifics
The rgy_enable_users script is a link to the umgt script, because the checks to
be performed are the same for all user management scripts.

The kernel of the RGY_ENABLE USER command is the following rgy edit command:

cat << EOF | rgy edit

domain account

change usr2 -ng itso -no ibm -h /:/dfs_home/usr2 -d /bin/ksh \
-x "one year from the current date” -gsd "current date” -av
quit

EOF

5.5.5.5 Example

Let us assume we want to make the following changes for usr2:

Change the primary group to security

Add usr2 to group g8

Delete usr2 from group fsc

Delete an ACL entry which usr2 has on CDS object /.:/sec

The following entries have to be made at the end of the user definition file:

Using and Administering DCE

- 11l Do NOT change manually the first part 11N
--- Principal info:

uuid=000001b5-76ec-2e02-ad00-10005a4f4165

uid=437

groups=fsc, staff, security

--- Account info:

group=itso

state=SUSPENDED
Tast_time_access=Mon Jun 20 10:55:03 CDT 1994 op=acl_enable_users
#11

#!! Edit below (values that could not be applied):
#11 Edit below (values to be applied next time):
ADD_newgrp=security

ADD_groups=g8

DEL_groups=fsc

DEL_ACL=cds#/.:/sec#user:usr2

Let us further assume that group g7 does not exist. The directive to add usr2 to
group g8 is left in the file, whereas the other entries which were successfully
applied are removed or embedded into the information in the upper part of the

file:

-- 10Nt po NOT change manually the first part 11111
--- Principal info:

uuid=000001b5-76ec-2e02-ad00-10005a4f4165

uid=437

groups=staff, security

--- Account info:

group=security

state=RGY_ENABLED
last_time_access=Mon Jun 20 10:55:03 CDT 1994 op=rgy_enable_users
#11

#!1 Edit below (values that could not be applied):
ADD_groups=g8

DEL_ACL=cds#/.:/sec#user:usr2

#11 Edit below (values to be applied next time):

The ACL entry was not deleted, because adding or deleting ACL entries are only
done, when acl_enable_users is executed.

5.5.6 Enabling the Users Home Directory: dfs_enable_users

The dfs_enable users procedure basically applies ACL definitions on the users
DFS home directories including the initial container creation and initial object

creation ACLs. It represents a way to administer individual ACL definitions for
each user's home directory.

If an administrator decides, they want to first define all ACLs manually, they
need no ACL_INI definition in the UDFs. The ACL_INI definitions can also be
generated later from what is actually defined on the DFS directories by running
get_info_users. If they want to set user ACLs later on with acl_enable_users,
they must run acl_enable users to set the state to DFS_ENABLED, even if no
ACL_INIs are defined.

Chapter 5. New Tools and Technologies 265

266

5.5.6.1 Syntax

The command takes one of the following forms:

dfs_enable_users <username>
dfs_enable users <filename>
dfs_enable users all
dfs_enable_users -h

5.5.6.2 Arguments
username Single user name to be added, such as joe or austin%joe

filename File containing only user names

all Keyword which indicates that the central repository should be
searched for all users in state RGY_ENABLED

-h Displays more information on the purpose of the program

5.5.6.3 Description
The command requires exactly one argument. It follows the same preparation
steps as rgy_enable_users except for the state, which has to be RGY_ENABLED.

The next step is to call DFS_ENABLE_USER $repos $ulist, where ulist is the list of
candidiates to be enabled. This procedure gets all ADD_ACL_INI and
DEL_ACL_INI attributes from the user definition file and tries to apply the values
to the specified DFS directories. The ones which cannot be applied, remain in
the UDF. If they can be applied, a DONE_INI entry is created in the UDF for each
successfully added or deleted ACL entry. The existing ACL_INI entries are not
consolidated to reflect the new ACL entries. To achieve that, a get_info_users or
get_all_info command has to be executed, which deletes the DONE_INI entries
and reflects the currently valid ACL_INIs.

If no ACL_INI attributes are defined, it is assumed that the cell uses only default
values. The command then only checks whether the home directory is in DFS
and whether it is accessible. If both are true, the state is set to DFS_ENABLED,
otherwise the state remains unchanged.

If acl_edit fails for any reason a message is issued and the state is not changed.

Note: This is primarily meant for the users’ home directories, but actually any
DFS object (file or directory) for which the user is owner, could be specified.
However, the GET_ACL_INI procedure only collects information from the home
directory. So ACL_INIs specified for other DFS objects for the dfs_enable users
command would never be updated or consolidated. If you wanted to extend this
concept to other DFS objects, you would need another UDF attribute such as
dfs_objects and extend the GET_ACL_INI procedure.

5.5.6.4 Implementation Specifics
The dfs_enable_users script is a link to the umgt script, because the checks to be
performed are the same for all user management scripts.

This step is separated from rgy _enable users to allow for creation of all DCE
users before setting any ACLs. If you assign each user his own fileset, you must
create these filesets before you run this command. After this command you
restore all files, so that the initial ACLs take effect, when the files are restored.

This procedure was created with tasks like migration from an NFS environment
or splitting a cell in mind.

Using and Administering DCE

The kernel of the DFS_ENABLE_USER command is the following acl_edit command:

for acl_entry in $ADD_ACLs $DEL_ACLs

do
object="echo $acl_entry | cut -f2 -d= | cut -f2 -d#"
perm="echo $acl_entry | cut -f3 -d#°
acltype="echo $acl_entry | cut -fl -d#°

case $acltype in
ADD_ACL_INI=dfs)
parms=" $object -m $perm”

ADD_ACL_INI_0C=dfs)
parms=" $object -io -m $perm"

ADD_ACL_INI_CC=dfs)

parms=" $object -ic -m $perm”
DEL_ACL_INI=dfs)

parms=" $object -d $perm"

DEL_ACL_INI_OC=dfs)
parms=" $object -io -d $perm”
DEL_ACL_INI_CC=dfs)
parms=" $object -ic -d $perm"
*) 29
parms=" -wrong"
BAD_ACLs=$BAD_ACLs"$acl_entry "
continue
esac

acl_edit $parms
done

5.5.7 Enabling the ACLs in CDS and DFS: acl_enable_users

The acl_enable_users procedure applies user ACL entries of the type
user:sal::rwx--- to DFS or CDS objects which do not belong to that user.

This procedure can also be used to manage these types of ACL entries. To
extract all such ACLs defined for a certain user call get_info_users. Then
suspend the user and add instructions to either remove (DEL_ACL) or add new
ACLs (ADD_ACL) to the user's UDF. After that you must call rgy_enable users,
dfs_enable users and acl_enable users

5.5.7.1 Syntax

The command takes one of the following forms:
acl_enable_users <username>
acl_enable_users <filename>

acl_enable_users all
acl_enable_users -h

Chapter 5. New Tools and Technologies 267

268

5.5.7.2 Arguments

username Single user name to be added, such as joe or austin%joe
filename File containing only user names

all Keyword which indicates that the central repository should be
searched for all users in state DFS_ENABLED

-h Displays more information on the purpose of the program

5.5.7.3 Description
The command requires exactly one argument. It follows the same preparation
steps as rgy_enable_users except for the state, which has to be DFS_ENABLED.

Once a list of users to operate on is created, ACL_ENABLE USER $repos $ulist is
called, where ulist is the list of candidates to be enabled. This procedure gets
all ADD_ACL and DEL_ACL attributes from the user definition file and tries to
apply the values to the specified DFS or CDS objects.

The ones which cannot be applied remain in the UDF for the next trial or for
manual deletion by the administrator. If they can be applied, a DONE entry is
created in the UDF for each successfully added or deleted ACL entry. The
existing ACL entries are not consolidated to reflect the new ACL entries. To
achieve that, a get_info_users or get_all_info command has to be executed,
which deletes the DONE entries and reflects the currently valid ACLs.

The state is set to FULL_ENABLED, if the command is successful.

If acl_edit fails for any reason a message is issued and the state is not changed.

5.5.7.4 Implementation Specifics
The acl_enable_users script is a link to the umgt script, because the checks to be
performed are the same for all user management scripts.

This step is separated from dfs_enable users to allow for creation or restoration
of all DFS directories and files between setting the initial ACLs and applying the
user type ACLs. Before you can apply the user type ACLs, all files or objects
must be there, but you probably want to restore the files after you have set the
initial ACLs, so they take effect upon restoration.

This procedure was created with tasks like migration from an NFS environment
or splitting a cell in mind.

The kernel of the ACL_ENABLE_USER command is the following acl_edit command:

for acl_entry in $ADD_ACLs $DEL_ACLs

do
object="echo $acl_entry | cut -f2 -d= | cut -f2 -d#"
perm="echo $acl_entry | cut -f3 -d#°
acltype="echo $acl_entry | cut -fl -d#°

case $acltype in
ADD_ACL=dfs)
parms=" $object -m $perm”

ADD_ACL=cds)
parms=" -e $object -m $perm’

U

DEL_ACL=dfs)

Using and Administering DCE

parms=" $object -d $perm"

DEL_ACL=cds)
parms=" -e $object -d $perm”
*) 29
parms=" -wrong"
BAD ACLs=$BAD ACLs"$acl entry "
continue
esac

acl_edit $parms
done

5.5.8 Suspending Users: susp_users

The susp_users procedure invalidates the DCE account in the DCE registry (NOT
valid), so that users cannot login anymore. Then it sets the state of the UDF to
SUSPENDED. This is a safe state to either delete the user or change some
attributes and reenable them again.

5.5.8.1 Syntax
The command takes one of the following forms:

Susp_users <username>
susp_users <filename>
susp_users all
susp_users -h

5.5.8.2 Arguments

username Single user name to be added, such as joe or austin%joe
filename File containing only user names

all Keyword which indicates that the central repository should be
searched for all users in state *_ ENABLED

-h Displays more information on the purpose of the program

5.5.8.3 Description
The whole description is in the introductory remarks.

5.5.9 Deleting Users: del_users

The del_users procedure is used to delete a user from the DCE registry. All user
type ACLs of the form user:sal::rwx--- are removed from the objects. The UDF is
moved to a cemetery directory from where it can be used to define the user with
the same characteristics in another cell.

5.5.9.1 Syntax
The command takes one of the following forms:

del_users <username>
del_users <filename>
del_users all
del _users -h

Chapter 5. New Tools and Technologies 269

5.5.9.2 Arguments

username Single user name to be added, such as joe or austin%joe
filename File containing only user names

all Keyword which indicates that the central repository should be
searched for all users in state SUSPENDED

-h Displays more information on the purpose of the program

5.5.9.3 Description

Before the user can be deleted, all user type ACLs for that user should be
removed. Otherwise the ACL entry will be orphaned. This means the username
that was defined for this ACL entry is replaced by its UUID, which is pretty ugly.
First, it is difficult to figure out who the user was and second, the entry cannot be
deleted before a new user adopts the UUID in the registry.

To remove all ACLs run get_info_users, to find all these entries first. This
procedure then operates on all user type ACLs as defined in the UDF in the
form:

ACL=cds#/.:/sec#user:usr2:r----
ACL=dfs#/:/dev/dce#user:usr2: rw----

and removes the according entry from the object ACL.

If ACL entries have been created or deleted recently, the UDF contains DONE
attributes, which reflect the update history for ACL entries managed via this UDF.
This also means that the ACL attributes in the UDF do not reflect the current
state as defined in DCE. To achieve a consolidation you must either run
get_info users or get _all info.

As long as DONE attributes are in the file or if deletion of an ACL entry fails, the
user is not deleted and an error message is displayed.

5.5.9.4 Implementation Specifics
The ACL removal part is implemented in the same way as in the
acl_enable_users command.

5.5.10 Getting Information for Users from DCE: get_info_users

270

The get_info_users procedure collects information from the DCE registry, CDS,
and DFS to update or create all attributes of the users’ UDFs. After execution of
this command the upper part of the UDFs reflect exactly what is defined in the
cell.

Use this command before you delete a user so that all ACLs defined for that
user are found and can be deleted. See also 5.5.9, “Deleting Users: del_users”
on page 269 for a description of this issue.

5.5.10.1 Syntax

The command takes one of the following forms:

get_info_users <username>
get_info_users <filename>
get_info_users all
get_info_users -h

Using and Administering DCE

5.5.10.2 Arguments

username Single user name to be added, such as joe or austin%joe
filename File containing only user names

all Keyword which indicates that the central repository should be
searched for all users defined in the repository. You can also use
get_all_info instead, which searches for all users and groups as
defined in the DCE registry and creates new UDFs or GDFs as
necessary.

-h Displays more information on the purpose of the program

5.5.10.3 Description
The whole functional description is in the introductory remarks.

If a username specified as <username> or contained in the file <filename>
does not have a UDF yet, one will be created.

You can limit the search for ACLs to a specific subtree of DFS by specifying the
environment variable in the file ENVIRONMENT:

DFS_STARTDIR=/:/dfshome

The default /:/*, which scans through the ACLs of all DFS files, leaving out
explicit read-write mount points like for instance /:/.rw or /:/.usrbin.

5.5.10.4 Implementation Specifics

This routine is able collect all ACLs for groups, too. You can define an
environment variable with certain group names, for which ACLs need to be
extracted:

export GROUPFILES="none staff group2”

The GDFs of these groups are then updated or created in the same run.

5.5.11 Getting Information for All Users from DCE: get_all_info

The get_all_info procedure does basically the same as get_info_users all
does.

The only difference is, it will query all usernames and groupnames from the DCE
registry and collect information for all of them.

5.5.11.1 Syntax
The command takes one of the following forms:

get_all _info <userdir> <groupdir>
get_all_info -h

5.5.11.2 Arguments
userdir Repository (directory) for user files

groupdir Repository (directory) for group files

-h Displays more information on the purpose of the program

Chapter 5. New Tools and Technologies 271

5.5.11.3 Description

You may specify new directories to create new UDFs and GDFs. If you specify
the central repository name for users and groups, then existing UDFs and GDFs
will be updated. For users and groups which do not have a file yet, one is
created.

This routine extracts all information from the registry to update or create user
and group definition files (UDFs and GDFs). It then gathers ACL information for
each user's home directory. Finally it scans all CDS and DFS objects to get their
user and group type ACL entries and adds them to each user's or group’'s
definition file.

This procedure can be used to perform an integrity check. Compare the
UDFs/GDFs generated in new directories, which reflect the state as actually
defined in DCE, with the UDFs/GDFs of the central repository, which might have
been corrupted through inadequate editing. However, integrity is automatically
achieved also by overwriting the existing files. The only difference is that you do
not know afterwards what was inconsistent.

You can limit the search for ACLs to a specific subtree of DFS by specifying the
environment variable in the file ENVIRONMENT:
DFS_STARTDIR=/:/dfshome

The default /:/*, which scans through the ACLs of all DFS files, leaving out
explicit read-write mount points like for instance /:/.rw or /:/.usrbin.

5.6 DCE on IBM

AIX High Availability Cluster Multi-Processing/6000

IBM AIX High Availability Cluster Multi-Processing/6000 is an environment of
loosely coupled, clustered RS/6000* machines executing the HACMP/6000
software on top of AIX to provide for high availability through redundancy and
shared resource access.

DCE on the other hand can provide a large scale distributed client/server
environment with application server processes running on many different
machines. To coordinate load and ensure security the DCE core services need
to be contacted before getting access to any application server. It is obvious
that these core services must be available all the time to keep the whole DCE
cell alive.

When using HACMP/6000 for the core services the clients in the DCE network
are not aware of the system change and behave as they would when restarting
DCE master services. Positive aspects of this are:

High reliability
Easy to maintain and control

Independence of DCE

Negative aspects are:
Requires additional planning and installation efforts
Proprietary solution (AIX and RS/6000 based only)

Expensive because of additional hardware requirements

272 Using and Administering DCE

Also customer developed DCE applications certainly need to be highly available.

This section gives a short overview on:
HACMP/6000 support for DCE
How DCE core services can use HACMP/6000
How DCE applications can use HACMP/6000

5.6.1 HACMP/6000 Support for DCE

As mentioned in 1.3.5, “IBM HACMP/6000” on page 25 DCE is supported only on
nonconcurrent access (mode 1) configurations of HACMP/6000. This means:

1. One-for-one standby configuration with owned/takeover resources

This is a redundant hardware configuration where one or more takeover
nodes (standby) stand idle, waiting for an owner node (server) to detach
from the cluster. This is also known as hot standby mode. When the owner
node rejoins the cluster, the takeover node releases the resource to its
owner.

2. One-sided takeover using owned/takeover resources

Also known as simple fallover is similar to hot standby, but the standby node
is doing some work which it can give up when a takeover occurs.

3. One-for-one standby configuration with rotating resources

This configuration differs from the above in that the ownership of the
resources is not fixed. In this case, resources are not designated as owned
by one node and takeover to the other. Rather they are tied to a shared IP
address and defined as rotating resources to both nodes. This is also known
as rotating standby.

In order to understand IBM AIX High Availability Cluster Multi-Processing/6000
and get more details on how it works, the following publications are
recommended:

HACMP/6000 System Overview

HACMP/6000 Planning and Installation Guide
HACMP/6000 Administration Guide

HACMP/6000 Troubleshooting Guide

HACMP/6000 Application Programming Interface Guide

5.6.2 DCE Core Services on HACMP/6000

As mentioned above availability of DCE core services such as CDS, security
service, and DTS are vital to a DCE cell. DCE itself implements redundancy by
replicating its core servers and their associated databases. As with other
distributed or replicated databases they allow only read access. Write access is
only possible to the master database.

This answers the question as to where HACMP/6000 makes sense in DCE cells.
Usually a cell is operational with read access to CDS and security. Tickets can
be issued and binding handles can be looked up, so users still can login and
services can be found and executed. However, the following are some examples
where write access is always required:

DCE application server frequently starting and stopping

Chapter 5. New Tools and Technologies 273

DCE application servers which behave as recommended export their
interfaces to CDS when they start and remove them when they stop. This
means they need write access.

Applications might (ab)use CDS as a central data repository
Customer wants to be always able to change cell configurations

Customer wants to be always able to modify the registry (user accounts)

Since HACMP/6000 ensures the availability of resources during system hardware
or network failures and is independent of DCE, it is the ideal platform for the DCE
security and CDS core services.

In case of a failure (disk, network or system hardware) a takeover to a standby
HACMP cluster system takes place. This takeover may cause an unavailability
of core services for a few minutes. This unavailability can be bridged with the
DCE read-only replication of the master services. As soon as the standby DCE
cluster system restarts the DCE master core services, the clients have there
read/write services accessible again.

DCE on HACMP/6000 is supported with AIX DCE Version 1.2 and Version 1.3 for
the following services:

rpcd
secd
sec_cl
cds_srv
cds_cl
cdsadv

Additionally we installed and tested dts_local which worked fine. At the time we
wrote this publication, no official support for DFS was announced.

—— DFS Support for HACMP/6000

In the meantime DFS support has now been announced. All components of
DFS can be installed in the above mentioned HACMP/6000 mode 1
configurations. More information can be found in the InfoExplorer
documentation for AIX DCE 1.3.

5.6.3 DCE Application Servers on HACMP/6000

274

Not only DCE core services can be made highly available with HACMP/6000, any
other DCE application can be implemented to HACMP/6000. It is probably the
easiest way to make an application highly available which was not designed this
way. However, if there are requirements for highly available DCE servers at
many different locations, it may become too expensive to ensure high availability
through HACMP/6000. It may also be possible that a DCE application server
needs to run on another platform than AIX. Such situations require the usage of
DCE dependent tools for replication.

In order to run replicated or with redundant instances DCE client/server
applications should be well written DCE programs which are capable to register
and unregister in the CDS namespace properly. The OSF DCE Application
Development Reference (Prentice Hall) from OSF is very helpful to understand
how to write proper DCE applications. As mentioned in 5.6.2, “DCE Core
Services on HACMP/6000” on page 273 you might want to consider HACMP/6000

Using and Administering DCE

to hold the CDS master directories. This would enable the DCE applications to
register their interfaces at all times.

In order for application servers to be able to register/unregister their interfaces
with CDS, they need write access to CDS. If there is a lot of application starting
and stopping going on, CDS must be highly available for write access. If you
wanted to avoid the need for highly available write access, you could decide to
manually add binding information to CDS and to write the servers programs so
they do not register/unregister themselves. However, using static CDS entries
introduces the risk that some stale interface definitions are hanging around in
CDS for services which are not available for any reason. This would result in
DCE timeouts when DCE clients try to use them.

Chapter 5. New Tools and Technologies 275

276 Using and Administering DCE

Appendix A. Installing the Tools

Together with this book we deliver a diskette with several tools we developed
during this project. Install these tools in any separate directory, for instance in
/dce_tools:

cd dce_tools

tar -xvf/dev/fdo0

backup_CH, 8039 bytes, 16 media blocks.
cleanif, 9692 bytes, 19 media blocks.
cleanup_cache, 2174 bytes, 5 media blocks.
cleanup_cds_cache, 1178 bytes, 3 media blocks.
cleanup_ip, 2448 bytes, 5 media blocks.
copy_CH, 5270 bytes, 11 media blocks.

create _cds_entry, 662 bytes, 2 media blocks.
rmsi_stream mapping, 3045 bytes, 6 media blocks.
umgt.tar, 163840 bytes, 320 media blocks.

X X X X X X X X X FH FHk

250KB of free space is needed in /dce_tools. You may want to copy the shell
scripts into /usr/local/bin or in any other directory available in your PATH
environment variable.

The umgt.tar file contains tools and configuration files needed for user
management. The concepts and structure of these tools as well as the details
about the commands are described in 5.5, “User (and ACL) Management” on
page 242.

We suggest creating a directory /umgt on a separate file system, which is to hold
the user information database. The size of the user and group definition files
(UDF/GDF) is about 1KB per user or group. Since 4KB disk space is allocated
for even a one-byte file, we have to reserve 4KB per user and per group plus
200KB to hold the shell scripts.

Install the tools as follows:

cd /umgt

tar -xvf/dce_tools/umgt.tar
ACL_ENABLE_GROUP, 4605 bytes, 9 media blocks.
ACL_ENABLE_USER, 5095 bytes, 10 media blocks.
ADD_GROUP, 4510 bytes, 9 media blocks.
ADD_USER, 5230 bytes, 11 media bTlocks.
CR_EMPTY GDF, 163 bytes, 1 media blocks.
CR_EMPTY_UDF, 158 bytes, 1 media blocks.

DEL _GROUP, 7125 bytes, 14 media blocks.
DEL_USER, 6245 bytes, 13 media blocks.
DFS_ENABLE_USER, 6374 bytes, 13 media blocks.
ENVIRONMENT, 3088 bytes, 7 media blocks.
GET_ACCOUNT, 5709 bytes, 12 media blocks.
GET_ACL, 10390 bytes, 21 media blocks.
GET_ACL_INI, 5959 bytes, 12 media blocks.
GET_GROUP, 5372 bytes, 11 media blocks.
GET_PRINCIPAL, 5597 bytes, 11 media blocks.
LOG, 113 bytes, 1 media blocks.

READ GDF, 3772 bytes, 8 media blocks.
READ_UDF, 5801 bytes, 12 media blocks.

RGY ENABLE USER, 7999 bytes, 15 media blocks.
SUSP_USER, 3522 bytes, 7 media blocks.

X I I

[J Copyright IBM Corp. 1994 277

WRITE_GDF, 3009 bytes, 6 media blocks.

WRITE UDF, 3651 bytes, 8 media blocks.
acl_enable users is a symbolic Tink to umgt.
add_groups is a symbolic Tink to gmgt.
add_users is a symbolic link to umgt.

del _groups is a symbolic Tink to gmgt.
del_users is a symbolic link to umgt.
dfs_enable_users is a symbolic Tink to umgt.
get_all_info, 2596 bytes, 6 media blocks.
get_info groups is a symbolic Tink to gmgt.
get_info users is a symbolic Tink to umgt.
umgt, 9763 bytes, 20 media blocks.

gmgt, 8681 bytes, 17 media blocks.

rgy enable users is a symbolic Tink to umgt.
susp_users is a symbolic Tink to umgt.
update groups is a symbolic link to gmgt.
nis2dce_groups, 742 bytes, 2 media blocks.
nis2dce users, 1337 bytes, 3 media blocks.
grp2dce, 754 bytes, 2 media blocks.

pwd2dce, 1346 bytes, 3 media blocks.

X X X X X X X X X X X X X X X X X X X X

The user management tools have to be executed in the directory, into which they
are restored. Make sure the PATH environment variable contains the current
directory. Otherwise add the following command into your /etc/environment file:

PATH=$PATH: :

278 Using and Administering DCE

Appendix B. Description of the Systems in our Scenario

This appendix is a overview of our test environment. It shows the IP
environment with connections, IP addresses, and system names. Then it lists all
machines with their hardware configuration.

B.1 Our Test Network Environment

evd

9.3.1.123
SLIP
192.1.21 9.3.1.122
192.1.21.2
ev3
193.1.10
e L]

192.1.20 192.1.20.2

193.1.104 T

Figure 42. IP Network of our Test Environment

B.2 Hardware Configurations

The following will show you the system configurations of our test environment.
The systems are named evl through ev6 where evl to ev4 are RS/6000, ev5 and
ev6 are PS/2 systems. The systems of the High Availability Cluster are named
hadavel and hadave2.

Disclaimer: Although we have used the following systems within our test
scenarios, they may not fit the needs of your customer expectations. The
performance numbers you will see later on in this chapter are also not
mentioned to show DCE performance but can help to design DCE cell structure
in order where and why to place certain DCE services. This becomes very
important especially while planing the implementation of large DCE
environments.

[J Copyright IBM Corp. 1994 279

B.2.1.1 System Information of evl
System configuration:

RS/6000 Model 520

memO Available 00-0D 32 MB Memory Card
mem1 Available 00-OH 32 MB Memory Card
hdiskO 400 MB SCSI Disk

hdiskl 400 MB SCSI Disk

AIX Version 3 Release 2.5

Network configuration:

trO Available Token Ring Network Interface

flags=8063<UP,BROADCAST ,NOTRAILERS ,RUNNING,ALLCAST> inet 9.3.1.68
netmask Oxffffff00 broadcast 9.3.1.255

xt0 Available X.25 Network Interface
flags=61<UP,NOTRAILERS,RUNNING> inet 192.1.20.3 netmask Oxffffff00

B.2.1.2 System Information of ev2
System configuration:

RS/6000 Model 720

memO Available 00-0B 16 MB Memory Card
mem1 Available 00-0D 32 MB Memory Card
mem2 Available 00-OF 16 MB Memory Card
mem3 Available 00-OH 32 MB Memory Card
hdiskO 670 MB SCSI Disk

hdiskl 670 MB SCSI Disk

AIX Version 3 Release 2.5

Network configuration:

trO Available Token Ring Network Interface

fl1ags=8063<UP,BROADCAST ,NOTRAILERS ,RUNNING,ALLCAST> inet 9.3.1.120
netmask Oxffffff00 broadcast 9.3.1.255

sl1 Available Serial Line Network Interface

flags=31<UP,POINTOPOINT ,NOTRAILERS> inet 192.1.21.1 --> 192.1.21.2
netmask Oxffffff00

B.2.1.3 System Information of ev3
System configuration:

RS/6000 Model 320

memO Available 00-0B 16 MB Memory Card
mem1 Available 00-0C 32 MB Memory Card
hdisk0 320 MB SCSI Disk

hdiskl 400 MB SCSI Disk

Operating System: AIX Version 3 Release 2.5

280 Using and Administering DCE

Network configuration:

trO Available Token Ring Network Interface

f1ags=8063<UP,BROADCAST ,NOTRAILERS ,RUNNING,ALLCAST> inet 9.3.1.122
netmask Oxffffff00 broadcast 9.3.1.255

en0 Available Standard Ethernet Network Interface

f1ags=2000063<UP,BROADCAST ,NOTRAILERS ,RUNNING,NOECHO> inet 193.1.10.3
netmask Oxffffff00 broadcast 193.1.10.255

sl0 Available Serial Line Network Interface

flags=71<UP,POINTOPOINT,NOTRAILERS,RUNNING> inet
192.1.21.2 --> 192.1.21.1 netmask Oxffffff00

B.2.1.4 System Information of ev4
System configuration:

RS/6000 Model 520

memO Available 00-OH 64 MB Memory Card
hdiskO 400 MB SCSI Disk

hdiskl 400 MB SCSI Disk

AlIX Version 3 Release 2.5

Network information:

trO Available Token Ring Network Interface

f1ags=8063<UP,BROADCAST ,NOTRAILERS ,RUNNING,ALLCAST> inet 9.3.1.123
netmask Oxffffff00 broadcast 9.3.1.255

en0 Available Standard Ethernet Network Interface

f1ags=2000063<UP,BROADCAST,NOTRAILERS ,RUNNING,NOECHO> inet 193.1.10.4
netmask Oxffffff00 broadcast 193.1.10.255

xt0 Available X.25 Network Interface
flags=61<UP,NOTRAILERS,RUNNING> inet 192.1.20.2 netmask Oxffffff00

B.2.1.5 System Information of ev5
System configuration:

PS/2 Model 8595-OKF

0S/2 2.1 with TCPIP for OS/2 V2.0
24 MB memory available

Math Coprocessor installed

DiskO 400MB SCSI Disk

Network configuration

lan0: IBM Token-Ring Network 16/4 Adapter/A (Pimary, 16 MBps)

flags=3063<UP,BROADCAST,NOTRAILERS ,RUNNING,BRIDGE,SNAP>
metric 1 inet 9.3.1.124 netmask ffffff00 broadcast 9.3.1.255

Appendix B. Description of the Systems in our Scenario 281

B.2.1.6 System Information of ev6
System configuration

PS/2 Model 8595-OKF

DOS 6.1 with Windows 3.1 and TCPIP for DOS V2.1.1
24 MB memory available

Math Coprocessor installed

Disk0O 320MB SCSI Disk

Network configuration
nd0: IBM Token-Ring Network 16/4 Adapter/A (Pimary, 16 MBps)

flags=1063<UP,BROADCAST ,NOTRAILERS ,RUNNING,ALLROUTES> inet
9.3.1.125 netmask ffffff00 broadcast 9.3.1.255

B.2.1.7 System Information of hadavel
System configuration:

RS/6000 Model 520

memO Available 00-OH 32 MB Memory Card
hdiskO 857 MB SCSI Disk

hdiskl 857 MB SCSI Disk

hdisk2 857 MB SCSI Disk

hdisk3 857 MB SCSI Disk

hdisk4 400 MB SCSI Disk

hdisk5 670 MB SCSI Disk

hdisk6 1.0 GB Differential SCSI Disk
hdisk7 1.0 GB Differencial SCSI Disk
scsi0 Available

scsil Available

scsi2 Available

Operating System: AIX Version 3 Release 2.5

Network configuration:

trO Available Token Ring Network Interface

flags=8063<UP,BROADCAST ,NOTRAILERS ,RUNNING,ALLCAST> inet 9.3.1.16
netmask Oxffffff00 broadcast 9.3.1.255

trl Available Token Ring Network Interface

flags=18063<UP,BROADCAST ,NOTRAILERS ,RUNNING,ALLCAST,HWLOOP> inet 9.3.4.16
netmask Oxffffff00 broadcast 9.3.4.255

282 Using and Administering DCE

B.2.1.8 System Information of hadave2
System configuration:

RS/6000 Model 520

memO Available 00-OH 32 MB Memory Card
hdiskO 857 MB SCSI Disk

hdiskl 857 MB SCSI Disk

hdisk2 670 MB SCSI Disk

hdisk3 857 MB SCSI Disk

hdisk4 857 MB SCSI Disk

hdisk5 1.0 GB Differential SCSI Disk
hdisk6 1.0 GB Differential SCSI Disk
scsi0 Available

scsil Available

scsi2 Available

scsi3 Available

Operating System: AIX Version 3 Release 2.5

Network configuration:

trO Available Token Ring Network Interface

flags=8063<UP,BROADCAST ,NOTRAILERS ,RUNNING,ALLCAST> inet 9.3.1.17
netmask Oxffffff00 broadcast 9.3.1.255

trl Available Token Ring Network Interface

flags=18063<UP,BROADCAST ,NOTRAILERS ,RUNNING,ALLCAST ,HWLOOP> inet 9.3.4.17
netmask Oxffffff00 broadcast 9.3.4.255

Appendix B. Description of the Systems in our Scenario 283

284 Using and Administering DCE

List of Abbreviations

ACL access control list

ADSM ADSTAR Data Storage
Management

ATM asynchronous transfer mode

CDMF Common Data Masking
Facility

CDS Cell Directory Service

cics Customer Information Control
System

CMIP common management

interface protocol

cMvCe Configuration Management
and Version Control

COSE Common Open Software
Environment

DCE Distributed Computing
Environment

DAP directory access protocol

DES data encryption standard

DFS Distributed File System

DME Distributed Management
Environment

DNS domain name service

FCS fibre channel standard

FLDB Fileset Location Database

GDA Global Directory Agent

GDF group definition file

GDS Global Directory Service

HACMP High Availability Cluster

Multi-Processing

[J Copyright IBM Corp. 1994

IBM

icc

IDL
IHMP

10C
ITSO

LAN
LFS
MAN
NFS
NIS
ONC
OSF
PAC
PTX
RDBMS

RPC
SCM
SNMP

soL
UDF
uuID
WAN
XMP

International Business
Machines Corporation

Initial Container Creation
(ACL)

interface definition language

IBM NetView Hub
Management Program

Initial Object Creation (ACL)

International Technical
Support Organization

local area network

Local File System
metropolitan area network
Network File System
Network Information System
Open Network Computing
Open Software Foundation
privilege attribute certificate
Performance Toolbox

relational database
management system

remote procedure call
System Control Machine

simple network management
protocol

structured query language
user definition file
universal unique identifier
wide area network

X/Open management protocol

285

286 Using and Administering DCE

Index

A

abbreviations 285
Access Control Lists
deleting user related ACLs 270
DFS ACL inheritance 209
DFS initial creation ACLs 209, 265
extracting all user/group related ACLs 270, 272
management, see also user management
managing user related ACLs 267
preferring group ACLs over user ACLs 33
preserving ACLs on DFS data backup 152
acl_edit 267
acl_enable_users
acronyms 285
add_groups 118, 207, 211, 250, 256
add_users 118, 162, 206, 207, 211, 245, 258
adding 32,000 users 174
adding users, examples 162
administration tasks, overview 83
ADSTAR Data Storage Management (ADSM) 9
aliases 172
application development
application architecture 36
scalability 37
server replication 36
summary 41
usage of core services 37
application development tips
ARP cache 216
Asynchronous Transfer Mode (ATM) 44
audit 33, 238
availability discussions
CDS design tips 39
in scenarios 47, 53, 66, 74, 82
planning summary 40
redundant network connections 40
service layout and application design 36

119, 170, 246, 265, 267

37, 41, 129

B

backup
backup by replication 142
CDS by disabling the service 144
CDS server database (clearinghouse) 144
CDS with continuous read-write access 146
CDS with read-only access 145
DFS data 152
DFS FLDB 148
RPC data 143
security server database 143
backup communication link 38, 74, 82
backup_CH 144, 145
BIND_PE_SITE 31, 51, 73, 78, 101

[J Copyright IBM Corp. 1994

binding handles
excluding interfaces 81
excluding WAN interfaces 41
ncacn_unix_stream 155
RPC binding information or CDS towers
UNIX stream sockets 221

bridges 44, 59

broadcasts 81, 132

C

cache files 153
caches
cache files and sizes 153
managing the cache files 156
CDMF 13
CDS
backing up a clearinghouse 144
CDS access via clerk-cache 156
cds-clerk cache 153
Changing Tower information 134
configuration steps 90
copying a clearinghouse 52
defining a preferred server 74
defining the cached CDS server 159
design tips 34, 39, 40, 74
expiration age of CDS cache entries
helpful CDS inquiry examples 132
introduction 15
managing the clerk-cache 156
moving a CDS server 135
moving a clearinghouse 133
moving a master directory 133
namespace planning 34
replica set 146
replication capabilities 38
replication steps 98
replication, overview 30
restoring the database 148
searching for an IP address 123
server selection mechanism 30, 74
storing NIS maps in CDS objects 205
cdscp define cached server 132, 159
cell layout
application design and implementation
frequency of calls from applications 37
general decision factors 27, 35, 43
network speed and bandwidth 37
network topology and availability 38
one cell or multiple cells 35, 40
summary 40
technical decision factors 36
cell_admin account, management of 194
cell_admin password lost 194

120

156, 157

36

287

cemetery directory 171, 269

changing an IP address 119

chpesite command 220

CICS 4

cleanif 120, 122

cleanup_cache 47, 120, 158

cleanup_cds_cache 120, 135, 148, 157

cleanup_ip 123

Clearinghouse, changing Tower information 134

client caches, see caches

client/server introduction 1

client/server model 3

cm checkfilesets 113, 161

cm flush 160

cm flushfileset 160

cm Isstores 160

cm resetstores 160

cm setpreferences 31, 74, 161

CMIP 8

CMVC 9

configuring DCE/DFS
changing cell configurations 116
configuring a DFS Client 106
configuring a file server 103
configuring an SCM 102
configuring another fileset 105
configuring CDS 90
configuring DFS 101
configuring DTS 91
configuring HACMP for DCE 215
configuring Single Login/6000 180
configuring the FLDB 103
configuring the root fileset 104
configuring the security service 89
configuring users for Single Login/6000 186
home directory in DFS 115
installing the DCE code 88
moving services within a cell 129
network name resolution 86
network routing 86
order of network interfaces 87
preparing for DCE configuration 84
replicating a DFS file server 107
replicating CDS 98
replicating the security server 99
scenarios, see test scenarios
split configuration 92, 220
splitting a cell 117
synchronizing the system clocks 88

controlling disk space 152

copy_CH 52,99

core services

CR_EMPTY_GDF 255

CR_EMPTY_UDF 165, 251, 260

create_cds_entry 120, 132, 159

credential files 154

crontab 154

288 Using and Administering DCE

D

data encryption 223
databases of DCE services 153
DCE
Cell Directory Service (CDS) 15
comparison of function support 22
DCE architecture 11
DCE components and services 12
DCE overview 10
Distributed File System (DFS) 16
Distributed Time Service (DTS) 16
HACMP with DCE 272
IBM provided administration tools 19
management services 19
mutual dependencies between DCE
components 18
new features of version 1.3 219
product packaging 21
Remote Procedure Call (RPC) 12
security service 13
Threads 12
DCE_HOSTNAME 95
defining a preferred server
CDS 74
DFS 74, 223
security server 73
when is it appropriate? 73
defining the cached CDS server 81, 132, 159
del_groups 118, 250, 256, 257
del_users 117, 246, 269
deleting users, examples 171
DES 13
DFS
accessing DFS from NFS 234
ACL inheritance 209
backing DFS data 152
backing up the FLDB 148
cm command suite, see cm
comparison with NFS 17
configuring a file server 103
configuring an SCM 102
configuring another fileset 105
configuring DFS Client 106
configuring the FLDB 103
configuring the root fileset 104
defining a preferred server 74, 223
design tips 39, 40, 74
DFS access from NFS 211
dfs client cache 153
dfsiauth command 215
home directory in DFS 115, 190, 265
introduction 16
managing the client cache 160
moving an file server 130
moving an FLDB server 130
moving an SCM machine 131
moving NFS files to DFS 208
NFS/DFS translator admin tasks 230

DFS (continued)
NFS/DFS translator configuration 212
NFS/DFS translator overview 227
path name resolution 74
replicating a DFS file server 107
replication capabilities 39, 40
replication of fileset data, details 224
replication of fileset data, overview 30
replication of the FLDB, overview 30
replication steps 101
restoring DFS data 152
restoring the FLDB 149
server selection mechanism 30, 74
steps for moving NFS files to DFS 211
timing problem with mkdfs 101

dfs_enable_users 118, 169, 246, 265

dfsiauth command 215, 232

disabling a CDS server 145

disk space requirements 84

diskless workstations 18

Distributed SMIT (DSMIT) 10

DNS 15

DTS
configuration steps 91
courier DTS servers 66, 72
global DTS servers 66, 72

introduction 16
local DTS servers 66
noncourier DTS servers 72

E

Encina 4
encryption of user data 223

excluding RPC network interfaces 81, 87

F

failed logins 192

features with version 1.3 219
Fiber Channel Standard (FCS) 44
Fiber Distributed Data Interface (FDDI) 44
file system full 152

files growing over time 152
fileset location database 102
filespace planning 40, 74

flat user namespace 33

fts syncfldb 151

full configuration method 92

G

GDF 256
GDS 15
get_all_info
get_info_groups
get_info_users
GIDs 243

245, 254, 255, 266, 268, 271
117, 256
117, 245, 265, 267, 270

global changes of file ownership 206
group management

central repository 256

command overview 255

file overview 257

introduction and overview 254
migration from other environments 258
states and transition 255

tools, see also tools

grp2dce 258

H

HACMP

home directory in DFS

configuring HACMP for DCE 215
files on a shared DASD 216
HACMP support for DCE 272
introduction 25

three modes 25

115, 190, 265

IBM distributed management tools

ADSTAR Data Storage Management (ADSM)
CMVC 9

Distributed SMIT (DSMIT) 10

Legato NetWorker 9

LoadLeveler 10

NetView Distribution Manager (NetView DM)
NetView Hub Management Program 8
NetView/6000 8

Network License System (NetLS) 10
Performance Aide (PAIDE) 9

Performance Toolbox (PTX) 9

Print Services Facility (PSF/6000) 10
Systems Monitor 8

Trouble Ticket 8

UniTree 9
IDL 12
inittab file 98

invalid logins 193

IP
IP

broadcasts 81
router 44

ISDN 82

J

joining cells

K

33, 40, 119, 171

Kerberos 13

L

Legato NetWorker 9
LFS 17

Index

9

9

289

list CDS information 132
LoadLeveler 10

local RPC 155, 221
login, invalid 193

M

master key 143

maximum allowable UID 179
message-based communication 2
migrating users 33, 40, 117, 119
modyfying users, examples 167
monitoring DCE with NetView 222
moving services within a cell 129
multi-protocol router network 74

N

namespace planning 34, 40, 74
ncacn_unix_stream binding handle 155

NetView Distribution Manager (NetView DM)

NetView for monitoring 222
NetView Hub Management Program 8
NetView/6000 8, 222
Network License System (NetLS) 10
network topologies
alternate communication links 59, 74
logically pure LAN topology 44
mixed LAN/WAN topology 59
scenario overview 43
NFS/DFS Translator, see under NIS/NFS
NIS/NFS
accessing DFS from NFS 234
comparison with DCE/DFS 17
DFS access from NFS 211
global changes of file ownership 206
integrating NIS/NFS into DCE 202
introduction 23
migrating NIS maps into DCE 203
moving NFS files to DFS 208
moving NIS users to DCE 207
NFS/DFS translator admin tasks 230

NFS/DFS translator configuration 212

NFS/DFS translator overview 227
NIS maps 24

steps for moving NFS files to DFS 211

unifying UIDs/GIDs 206
nis2dce_groups 207, 211
nis2dce_users 206, 207

O

OEC toolkit 4

PAC 14
password expiration 191

290 Using and Administering DCE

password of cell_admin lost 194
password rules and restrictions 190
pe_site file 220
Performance Aide (PAIDE) 9
performance discussions
CDS design tips 39
in scenarios 47, 53, 66, 72, 79, 82
issues determining performance 36
planning summary 40
service layout and application design
Performance Toolbox (PTX) 9
planning
availability tips for WANs 40
CDS design tips 40
CDS namespace 34, 39, 74
decision factors for DCE design 27
DFS filespace 74
DFS FLDB and filesets 39, 40
security service 39
summary 40
user namespace 40
preferred server, see defining
Print Services Facility (PSF/6000) 10
problem with mkdfs 101
PTF 88
pwd2dce 207, 254

R
RDBMS 4
release notes 85
reliable network 38, 40
renew_dir_entries 123
replica set 146
replicated servers in branches 82
replication
benefits 29
CDS and its database 30

36

DCE services vs. network link replication

DFS fileset server and data 224

fileset server and data 30

FLDB server and database 30

for DCE applications 36, 41

security server and its database 29

server selection mechanisms 30
restarting the CDS server 145
restore

CDS database 148

DFS data 152

DFS FLDB 149

security server database 144

38

rgy_enable_users 118, 164, 168, 207, 246, 263

rmxcred 154

root fileset 104

router 44,59, 74

routing
checking network routing 86
gated, routed 82

network links and dynamic routing 38, 41

routing (continued)
redundant links and dynamic routing 67
relying on IP routing for DCE 81
RPC group entries 30, 72
RPC overview 12
RPC_UNSUPPORTED_NETIFS 41, 59, 81, 87, 217, 222
RPC, local sockets 155, 221

S

scenarios, see test scenarios
searching CDS for an IP address 123
sec_admin 143
security service
backing up the database 143
configuration steps 89
credential files 154
defining a preferred server 73
design tips 39
extracting all DCE registry information 270, 272
introduction 13
locksmith mode 194, 197
making the secondary a primary server 140
maximum allowable UID 179
moving the primary security server 137
pe_site, chpesite 220
replication capabilities 39
replication steps 99
replication, overview 29, 220
restoring the database 144
server selection mechanism 30, 72, 73
security threats 13
server databases of DCE services 153
server selection mechanisms 30
Single Login/6000
access denied situations checklist 193
accounting and auditing support 237, 238
adding users with the umgt tools 166
configuring Single Login/6000 180
configuring users 186
defining departments 186
department concept 166, 182
disk space required per user 153
failed login control 192
global login user entry 185
global users 182
home directory in DFS 190
order information 235
overview and highlights 235
password rules and restrictions 190, 237
planning the user namespace 33
XDM support 237
sizing
disk space required per client system 32, 153
disk space required per user 31, 153
dynamic sizing 32
memory space required per client system 32
memory space required per user 31
static sizing 31

SLIP 59, 82
SLIP interface ignored by RPC 70
SNMP 8

socket files 85

split configuration 92, 220

split configuration method 94

splitting a cell 117, 171

starting and stopping DCE/DFS 97

stub size 223

susp_users 117, 168, 171, 246, 252, 269
system control machine 101

Systems Monitor 8

T

test scenarios
(1) single LAN, one server 45
(2) single LAN, two server machines 48
(3) single LAN, multiple server machines 54
(4a) small branch connected via X.25 60
(4b) small branch connected via SLIP 68
(5a) large branch connected via X.25 71
(5b) small branch connected via SLIP 75
(6) redundant links (X.25/SLIP) 81
availability, see availability discussions
LAN-type cells 43
LAN/WAN-type cells 58
performance, see performance discussions
scenario groups 43

Threads 12

three-tier architecture 5, 36

ticket lifetime 174

timeout 82

timing problem with mkdfs 101

tools on the diskette
acl_enable_users 119, 265, 267
add_groups 118, 207, 256
add_users 118, 162, 207, 258
adding 32,000 users 174
backup_CH 145
cleanif 120, 122
cleanup_cache 47, 120, 158
cleanup_cds_cache 157
cleanup_ip 123
copy_CH 52,99
CR_EMPTY_GDF 255
CR_EMPTY_UDF 165, 260
create_cds_entry 120, 159
del_groups 256
del_users 269
dfs_enable_users 118, 265
get_all_info 254, 255, 266, 268, 271
get_info_groups 117, 256
get_info_users 117, 265, 267, 270
grp2dce 258
installing the tools 162, 277
nis2dce_groups 207
nis2dce_users 206
pwd2dce 207, 254

Index

291

tools on the diskette (continued) X
rgy_enable_users 118, 164, 207, 263

susp_users 117, 168, 171, 269 X.25 59, 82
update_groups 256 XDM 235
xlock, xautolock 237

user management tool overview 244
Tower information in CDS 134
towers, CDS 120
TPS 32
Trouble Ticket 8
two-tier architecture 4

XMP 8

U

ubik 39, 149
UIDs 243
umask 210

unable to add key 101

unifying UIDs/GIDs 206

unique GIDs 206

unique UIDs 33, 180, 206

unique user names 33

UniTree 9

update_groups 255, 256

updating users, see modifying

user management
adding users for SlinlgeLogin/6000 166
adding users with predefined UIDs 165
adding users, examples 162
aliases 172
cemetery directory 171, 269
central repository 246
controlling automatic UID assignment 261
customizing the umgt tools 253
defining default values for UDFs 253
deleting users, examples 171
extracting all user/group related ACLs 270, 272
file overview 252
group management, see group
initial user password 262
introduction and overview 242
managing the cell_admin account 194
migration from other environments 254
modifying users, examples 167
states and transition 251
tool structure and overview 244
tools, see also tools
top DFS directory for ACL search 271
UIDs, GIDs and access rights 243
user definition file (UDF) 248
where are users logged in 193

user namespace planning 33, 40

UuIiD 12, 243

wW

where are users logged in 193

292 Using and Administering DCE

ITSO Technical Bulletin Evaluation REDOOO

International Technical Support Organization
Using and Administering AIX DCE 1.3
November 1994

Publication No. GG24-4348-00

Your feedback is very important to help us maintain the quality of ITSO Bulletins. Please fill out this
questionnaire and return it using one of the following methods:

Mail it to the address on the back (postage paid in U.S. only)
Give it to an IBM marketing representative for mailing

Fax it to: Your International Access Code + 1 914 432 8246
Send a note to REDBOOK@VNET.IBM.COM

Please rate on a scale of 1 to 5 the subjects below.
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction

Organization of the book
Accuracy of the information

Grammar/punctuation/spelling
Ease of reading and understanding

Relevance of the information Ease of finding information
Completeness of the information Level of technical detail
Value of illustrations Print quality

Please answer the following questions:
a) If you are an employee of IBM or its subsidiaries:

Do you provide billable services for 20% or more of your time? Yes No___
Are you in a Services Organization? Yes No___
b) Are you working in the USA? Yes No__
c) Was the Bulletin published in time for your needs? Yes No___
d) Did this Bulletin meet your needs? Yes No___

If no, please explain:

What other topics would you like to see in this Bulletin?

What other Technical Bulletins would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

Name Address

Company or Organization

Phone No.

ITSO Technical Bulletin Evaluation REDOOO

GG24-4348-00

Fold and Tape

Please do not staple

Fold and Tape

BUSINESS REPLY MAIL

FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM International Technical Support Organization
Department 948, Building 821

Internal Zip 2834

11400 BURNET ROAD

AUSTIN TX

USA 78758-3493

NO POSTAGE
NECESSARY

IF MAILED IN THE
UNITED STATES

Fold and Tape

GG24-4348-00

Please do not staple

Fold and Tape

Cut or Fold
Along Line

Cut or Fold
Along Line

Printed in U.S.A.

624-4348-

	Using and Administering AIX DCE 1.3
	Abstract
	Contents
	Figures
	Tables
	Special Notices
	Preface
	How This Document is Organized
	Related Publications
	International Technical Support Organization Publications
	Acknowledgments

	Chapter 1. Introduction
	Overview of Client/ Server Technologies
	Two- Tier Client/ Server Model
	Three- Tier Client/ Server Model
	Administration Issues in Client/ Server Environment
	What is Available for Management
	Distributed Technology
	DCE Overview
	OSF DCE Architecture
	OSF DCE Components and Services
	NIS/ NFS
	IBM HACMP/ 6000

	Chapter 2. Planning DCE Cells
	General Considerations for DCE Cell Design
	Technical Implications Imposed by the Core Components
	Replication Capabilities
	Server Selection Mechanisms
	Sizing Guideline
	Static Sizing
	Dynamic Sizing
	Planning the User Namespace
	Planning the CDS Namespace
	Conclusions and Planning Tips
	One Cell or Multiple Cells?
	Tips for Service Layout and Application Design
	Planning Summary

	Chapter 3. Implementing DCE Cells
	Local (LAN- type) Cells
	Scenario 1: All Servers on One Machine without Replicas
	Scenario 2: Master Servers on One Machine and Replicas on Another
	Scenario 3: Master Servers and Replicas on Different Machines
	LAN/ WAN Cells
	Scenario 4a: A Small Branch Connected via X. 25
	Scenario 4b: A Small Branch Connected via SLIP
	Scenario 5a: A Large Branch Connected via X. 25
	Scenario 5b: A Large Branch Connected via SLIP
	Scenario 6: A Branch Connected with Two Links

	Chapter 4. Administering DCE Cells
	Configuring a Cell
	Preparing for DCE Configuration
	Installing the DCE Code
	Configuring the Core Services
	Configuring the DCE Clients
	Starting and Stopping DCE
	Replicating DCE Core Services
	Configuring DFS
	Configuring a DFS Server
	Configuring a DFS Client
	Replicating DFS Server
	Defining Home Directories in DFS
	Changing Cell Configurations
	Splitting Cells
	Joining Cells
	Changing IP Addresses
	Moving Services Within the Cell
	Backup/ Restore and Other Housekeeping Tasks
	Backing Up DCE Core Services Related Information
	Backing Up DFS Servers Related Information
	Backing Up and Restoring DFS Data
	Controlling Disk Space: System Created Files
	Managing Caches on Client Machines
	Administering Users and Groups
	Adding Users
	Modifying Users
	Deleting or Moving Users
	Users Aliases
	A Test with Adding 32,000 Users
	Configuring Single Login/ 6000
	Managing the cell_ admin Account
	Restoring the Password for the Cell Administrator
	Cell Administrator Accidentally Removed
	Adding a New Cell Administrator
	Integrating an NFS/ NIS Environment
	Migrating from NIS Domains to DCE cells
	Migrating Users from NIS to DCE
	Migrating NFS Files to DCE/ DFS
	Configuring DFS Access from NFS Clients
	Configuring DCE on HACMP

	Chapter 5. New Tools and Technologies
	AIX DCE 1.3 Overview
	Security Server Replication
	Split Configuration
	Local RPCs
	Environment Variable RPC_ UNSUPPORTED_ NETIFS
	Monitoring Function in IBM NetView for AIX
	Exportable Data Encryption Facility CDMF
	Stub Size Reduction
	Preferred File Server for DFS Clients
	DFS Replication
	Overview
	Why Fileset Replication?
	Which Files to Replicate?
	How Does Replication Work?
	NFS to DFS Authenticating Gateway
	Introduction
	Scope of Service
	Concept
	Administration Tasks for the System Administrator
	Administration Tasks for the DFS User
	Making DFS Access Available on the NFS Clients
	Single Login/ 6000
	Single Login/ 6000 Features Overview
	Possible Enhancements for Single Login/ 6000
	AIX and Single Login/ 6000
	User (and ACL) Management
	User Identifications, Groups, and Access Rights
	Management Tool Structure and Overview
	Group Management
	Adding Users: add_users
	Enabling Users for DCE Login: rgy_ enable_ users
	Enabling the Users Home Directory: dfs_ enable_ users
	Enabling the ACLs in CDS and DFS: acl_ enable_ users
	Suspending Users: susp_users
	Deleting Users: del_users
	Getting Information for Users from DCE: get_info_users
	Getting Information for All Users from DCE: get_ all_ info
	DCE on IBM AIX High Availability Cluster Multi- Processing/ 6000
	HACMP/ 6000 Support for DCE
	DCE Core Services on HACMP/ 6000
	DCE Application Servers on HACMP/ 6000

	Appendix A. Installing the Tools
	Appendix B. Description of the Systems in our Scenario
	B. 1 Our Test Network Environment
	B. 2 Hardware Configurations

	List of Abbreviations
	Index
	A
	C
	B
	D
	H
	I
	E
	F
	J
	K G
	L
	M
	N
	R
	O
	P
	S
	T
	X
	U
	W
	ITSO Technical Bulletin Evaluation RED000

